

#### Dr. Ishwarappa, S. Katageri

Associate Director of Research
University of agricultural Sciences
Regional Research Station, Vijayapura
Karnataka State

katageriis@uasd.in



## **Genome Editing: Why**

- Functional Validations of gene
- Targeted trait modification

# Genetic manipulation in crops: History

- Crop Domestication : Natural Genetic Variability (Spontaneous Mutations)
- Crop Domestication: 10,000 years back, about
   2500 crop species domesticated
- Conventional Breeding
- Genetic Engineering: GM crops, Molecular Breeding
- Targeted Gene editing



#### **Induced Mutations**

- Earliest Genome Editing example in plants by Stadler, 1928, Barley, X-Rays
- Mari (1952)....X-ray... Early flowering Mari barley released in 1962
- 1969: Special training course on mutation breeding (FAO/ IAEA): Breeders tool box

( <u>www.mvd.iaea.org</u>)-mutatnt variety data base



- Challenge was the design of chimeric nucleases
- To catalyzes the cleavage of DNA, and the second is capable of selectively binding to specific nucleotide sequences of target molecule, providing the nuclease action to this site



## Gene editing technologies

- Transcription activator-like effector nucleases (TALENs)
- Zinc-finger nucleases (ZFNs)
- CRISPR-Cas systems-<u>C</u>lustered <u>Regularly Interspaced</u>
   <u>S</u>hort <u>P</u>alindromic <u>Repeats</u> (CRISPR)-<u>C</u>RISPR <u>as</u>sociated
   (Cas): <u>creating a buzz</u> in the science world —<u>Transgene</u>
   Free

The CRISPR-Cas9 system currently stands out as the fastest, cheapest and most reliable system for 'editing' genes.



#### **CRISPR Mechanism**

- The key step in editing an organism's genome is selective targeting of a specific sequence of DNA.
- Two biological macromolecules, the Cas9 protein and guide RNA, interact to form a complex that can identify target sequences with high selectivity.



### From Where it is learnt

- CRISPR/Cas system is a prokaryotic <u>immune</u> system (form of <u>acquired immunity</u>)that confers resistance to foreign genetic elements
- **CRISPR-**DNA sequences in bacteria that contains snippets of DNA from viruses that have attacked the bacterium
- Snippets are used by the bacterium to detect and destroy DNA from further attacks by similar viruses
- From this basis of a genome editing technology ,known as **CRISPR/Cas9** that allows permanent modification of genes within organisms





- The CRISPR-Cas9 system consists of two key molecules that introduce a change (mutation?) into the DNA.
- Enzyme, Cas9- acts as a pair of 'molecular scissors' that can cut the two strands of DNA at a specific location in the genome so that bits of DNA can then be added or removed.
- A piece of RNA guide RNA (gRNA)- consists of a small piece of pre-designed RNA sequence (about 20 bases long) located within a longer RNA scaffold.



Seventh Asian Cotton Research and Development Net work Meeting,15-17,September2017,Nagpur



#### **Successful Evidences**

- Cong et al. (2013) successfully accomplished the first genome editing in human cells with CRISPR/Cas9 system.
- Mali et al. (2013) conducted gene editing in different human cell types and accomplished DNA replacement with a donor template.
- Rice and wheat were the first crops that were genetically edited with CRISPR/Cas9 system, and knockout of OsPDS generated albino rice mutant (Shan et al., 2013). These pioneering works promote its broad utilization of CRISPR/Cas9 system in the research of life science.



### **Opportunities in Cotton**

- High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system
- Pengchang et al 2017
- DsRed2 protein (Discosoma red fluorescent protein2) was firstly isolated from reef corals (Discosoma sp.), and it has been applied in plant molecular biology as a reporter



- DsRed2-overexpressed transgenic cotton linered colour in somatic embryos and seeds under white light
- DsRed2-edited T0 plants obtained authentic gene mutation, and they had no red fluorescence
- For another target gene GhCLA1 (chloroplast development), an average of 75% regenerated TO plants showed an albino phenotype







Development Net work Meeting,15-17,September2017,Nagpur



Seventh Asian Cotton Research and Development Net work Meeting,15-17,September2017,Nagpur

#### Work done so far... in Cotton

| SN | Target gene            | Gene function/role                                                         | Ref.                                                     |
|----|------------------------|----------------------------------------------------------------------------|----------------------------------------------------------|
| 1  | GhCLA1                 | Chloroplastos alterados                                                    | Chen et al. 2017;<br>Wang et al. 2017<br>Gao et al. 2017 |
| 2  | GhVP                   | Vacuolar H+ pyrophosphatase                                                | Chen et al. 2017                                         |
| 3  | GhMyb25                | Myb25 like gene                                                            | Li et al. 2017                                           |
| 4  | GhARG                  | Lateral root formation                                                     | Wang et al. 2017                                         |
| 5  | GhEF1                  | Translation elongation factor 1                                            | Gao et al. 2017                                          |
| 6  | GhPDS                  | Phytoene desaturase to visibly show the effect of genome editing           | Gao et al. 2017                                          |
| 7  | Helioithis-<br>Caderin | Receptor of H. armigera for Cry1Ac toxin protein                           | Wang et al. 2016                                         |
| 8  | GFP                    | Green florescent protein as an example of exogenous gene editing in cotton | Junga et al., 2017                                       |

#### Potential target genes in Cotton

| SN | Target<br>gene           | Gene function/role                                                                                            | Comments                                           |
|----|--------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 1  | Virus genes (exogenous ) | Virus replication, movement                                                                                   | Exogenous gene target                              |
| 2  | GhPRP5 *                 | Proline rich protein, a cell wall structure protein – its expression negatively correlated with fiber quality | To validate the role in fiber length               |
| 3  | GhCDS*                   | D-Cysteine desulphydrase –its expression negatively correlated with fiber quality                             | To validate the role in fiber length               |
| 4  | GhTLP*                   | Thaumatin Like Protein-its expression is positively correlated with fiber length                              | To validate the role in fiber length               |
| 5  | Other<br>QTLs            | Various gene association studies identify several QTLs associated with different traits                       | Role of QTLs can<br>be assessed by<br>editing them |

## CRISPR-Cas9 system to develop gossypol free seed in upland cotton (*G. hirustum* L.)

- More than 90% of cotton produced in India and worldwide is from upland cotton (Gossypium hirustum L.). In India every year 2.5 million tons of cotton seed with 33% protein and 39% fat content worth Rs. 10,000 crores is available.
- Due to the presence of gossypol and other pigments it **is not suitable for human consumption**. Gossypol is desirable in leaves and roots of the cotton plant to control insect pests and diseases.
- Natural cultivars without gossypol are susceptible to pests/diseases and hence commercially not successful.
- In USA using **RNAi gossypol** in cotton seed was reduced with a seed specific promoter by suppressing (+)-delta-cadinene synthase (**cdn**) gene with **transgene present** always.
- To develop **transgene free** final product we propose to edit **cdn gene(s) expressed in cotton seeds** using CRISPR-Cas9 and eliminate the CRISPR-sgRNA-Cas9 transgenes in T<sub>2</sub> generation

  Seventh Asian Cotton Research and

#### **Selection of sgRNAs**

Based on *in silico* analysis selected sgRNAs (single guide RNAs) for each of three cdn genes in *G. hirsutum* L.

| G. hirsutum cdn gene | sgRNA sequence (5'3') with NGG PAM sequence | sgRNA orientation |
|----------------------|---------------------------------------------|-------------------|
| cdn1-D1 (AY800107)   | GTTCTTAAGGGGAAATTATT <mark>AGG</mark>       | Sense             |
| (A1600107)           | <b>CCG</b> GTCACTCTTTGAAAATTACC             | Anti-sense        |
|                      | AGGAGAGAAGATGATTTCTC <mark>GGG</mark>       | Sense             |
|                      | <b>CCT</b> GGAAGGATGTGAATAAAGGG             | Anti-sense        |
|                      | GTTCTTAAGGGGAAATTATT <mark>AGG</mark>       | Sense             |
|                      | <b>CCA</b> ACCGAAATGCCAATAGAAGT             | Anti-sense        |
| cdn1-C4              | TTCTATGATATGATTTTTTTAGG                     | Sense             |
| (AF270425)           | XXXXXXXXXXXXTTTTTAGG <mark>TGG</mark>       | Sense             |
| cdn1-C5              | TACAAATGCAATTGAGAGG <mark>TGG</mark>        | Sense             |
| (AY800106)           | <b>CCG</b> ACAAGAATATTGATGCTGAA             | Anti-sense        |

**PAM:** Protospacer adjacent motif (highlighted in green); Intron sequence is highlighted in gray colour; X: Nucleotide sequence unknown but will be determined later from the whole genome sequence.

