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It is commonly accepted that the primary event induced by 

 various stress factors in plants is  

the burst of reactive oxygen species  

ROS 

i.e. a state of oxidative stress 

 that can have deleterious effect on cell function and structure.  

 

Plants elaborated a diversified network of antioxidants (ROS scavengers) to 

regulate the oxidative stress.  

The antioxidant potential is deployed as a response to stress inflict.  
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Pathogens 

Temperature extremes 

Water deficit 

Nutrient imbalance 

High light UV 

Metals 

Stress factors ROS ROS 

Antioxidants 

 
The antioxidant defense of plants involves compounds 

of diverse chemical types 
 

Enzymes 
 
Peroxidase 
Catalase  
Superoxidedismutase 
Glutathione reductase 
Etc. 

Non-enzymatic compounds 
 
Carotenoids 
Tocopherols 
Polyphenols 
Proline 
Polyamnines 
Etc. 
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In our long-term research on cotton stress physiology we examined  

two cases of cotton- stress factor interactions: 

   Nutrient (K/Na) imbalance 
      (leaf reddening) 

   Water deficit 

In both cases abiotic constraints induce 

a state of oxidative stress 

Cotton reddening   
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Red cotton leaves   

• Three locations in Aegean region: 
  Söke, Menemen, Bergama 

• Cotton plants: 
  Nazilli 84 cv. 

♦ Leaves of green plants (controls) 
    Leaves with symptoms of reddening: 
♦ Light symptoms 
♦ Severe symptoms 

• Soils: 
♦Under green plants 
♦Under reddening plants 
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We have established that  

reddening of cotton leaves  

is provoked by  

K deficiency in the soil and K/Na imbalance 

leading to overaccumulation of Na in the leaves  

K and Na content (ppm) of soils on which  
green and reddening plants are grown 
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Plants make better use of Na in case of K deficiency 

K and Na content (%) in leaves  
of green and reddening plants 
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Excess of Na induces over-accumulation of toxic 
OH• free radicals in plants, i.e.  

a state of oxidative stress (Alia et al. 1993). 
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Biochemical changes  
related to cotton reddening 

Increase of non-enzymatic (proline) and enzymatic (peroxidase) antioxidants in 
reddening leaves 
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Dramatic increase of anthocyanins and total phenols in the reddening 
leaves 
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Green leaves 
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HPLC of anthocyanins (C6-C3-C6+) in green and reddening cotton leaves 
Peaks 4 and 5 are identified as cyanidin glycosides 
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 The shift from malvidin to cyanidin in reddening leaves determines a 
stronger protective potential against oxidative stress. 

OCH3 

OH 

OH 

OH 

HO OCH3 
O 
+ 

OH 

OH 

OH 

OH 

HO H O 
+ 

Malvidin 
•  Low antioxidant/antiradical activity 
•  Predominant aglycone in green leaves 

Cyanidin 
•  High antioxidant activity 
(due to the o-OH grouping in the B-ring) 
•  Predominant aglycone in reddening leaves 
 
 

Green leaves Reddening leaves 

B B 

A A 

The efficacy of the antioxidant defense in reddening leaves is 

evidenced by the low damage of membrane integrity as shown by the  

  Malonyl dialdehyde (MDA) test  

  Transmission electron microscopy  
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MDA test 
Low membrane damage in reddening leaves 

MDA 

Transmission electron microscopy 
 

Preserved membrane integrity in reddening leaves 

Reddening leaves Green leaves 
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Antioxidant protection in reddening cotton leaves:  
general proposed scheme 

Shortage of 
K 

Accumulation 
of Na 

Burst of ROS Accumulation 
of proline 

Increase of 
peroxidase 

activity 

Accumulation 
of 

anthocyanins 

Shift of 
aglycons 

Green 
leaves 

Red 
leaves 

Scavenging of ROS 

ROS 

Drought tolerance 
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Experimental design 

Nazilli 84-S 
Drought sensitive (S) 

Şahin 2000 
Drought tolerant (T) 

Irrigation regimes 
♦ Field capacity (normal water supply) 
♦ 1/3 field capacity (drought stress) 

Locality 
♦ Söke, Aegean region of Turkey 
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Biochemical     
• Non-enzymatic antioxidants 
   - Polyphenols 
   - Proline 
   - Carotenoids 
• Markers of membrane damage 
   - Malonyldialdehyde (MDA) 

Parameters 

Physiological   
• Photosynthesis 
• Water use efficiency (WUE) 
• Max photochemical activity of PSII 

• Relative water content (RWC) 

  Proline 

Non-enzymatic antioxidants 

  Polyphenols 

  Carotenoids 
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HPLC pattern of polyphenols in the 
leaves of cotton genotype Nazilli 84-S.  
1, 2, 3 – isomers of chlorogenic acid: 
             1 – 5-O-caffeoyl quinic acid 
             2 – 3-O-caffeoyl quinic acid 
             3 – 4-O-caffeoyl quinic acid 
4 – 10 – flavonoids: 
             4 – isoquercitrin glycoside 
             6 – rutin 
             8 – quercitrin 
             9 – kaempferol-3-rutinoside 
           10 – quercetin  
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Quercetin 

 Main polyphenols in cotton leaves 

Flavonoids: 
quercetine 
derivatives 

Cinnamic acid  
derivatives 
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Both types have high antioxidant activity due to the presence of o-dihydroxy grouping  
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  Quercetin derivatives (rutin, isoquercitrin)  

are the major flavonoids in cotton leaves 

 

Rutin
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Kaempferol -3-rutinoside

0

0,1

0,2

0,3

0,4

0,5

    Normal water supply      Drought stress

m
g 

g-1
 F

M

Nazilli 84 (S)
Sahin 2000 (T)

Total flavonoids

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

  Normal water supply       Drough tstress

m
g 

g
-1

 F
M

Nazilli 84 (S)
Sahin 2000 (T)
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than in the sensitive (    ) genotype: 
-at normal water supply 
-at drought 



11/29/12 

17 

3-0-caffeoyl quinic acid
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4-0-caffeoyl quinic acid
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Higher content of chlorogenic acid isomers in the 
drought-tolerant (   ) than in the sensitive (   ) 
genotype: 
-at normal water supply 
-at drought 
 

β-carotene 

Non-enzymatic 
antioxidants  

Proline 
Carotenoids 

 

H 

N 

CH     COOH H2C 

CH2 H2C 

Proline 
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Proline
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Higher content of proline and carotenoids in the drought-tolerant (   ) than 
in the sensitive (   ) genotype: 
-at normal water supply 
-at drought 
 

The efficacy of the antioxidant defense in  

the drought-tolerant genotype is evidenced by:  

  lower membrane damage 

  better physiological performance  

as compared to the sensitive genotype  
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MDA
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Lower membrane damage (malonyl dialdehyde content, MDA) in 
the drought-tolerant (   ) than in the sensitive (   ) genotype at: 
- normal water supply 
- drought  

Photosynthetic parameters in  drought-subjected plants as % of the plants grown at 
normal water supply 

 
 

Better photosynthetic performance in the drought-tolerant (   ) than 
in the sensitive (   ) genotype  
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- normal water supply 
- drought  
 

Conclusion  
  Cotton plants employ an effective versatile network of 

antioxidant compounds for defense against various 
abiotic stress constraints.  

  The data obtained contribute to the understanding of 
the biochemical bases of abiotic stress tolerance in 
plants. 

   They can serve as a rationale in modeling and 
engineering abiotic stress tolerant cotton crops. 
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