

Conservation Agriculture – the BMP for Sustainable Cotton Production in Africa: Indian Experiences

Blaise Desouza
ICAR-Central Institute for Cotton Research,
Nagpur, Maharashtra
India

Email: blaise_123@rediffmail.com

Outline

- Introduction
- Methodology
- Findings
- Applications to the African context
- Conclusions

Introduction

- Productive Soil high yields
- Soil Neglect leading to deterioration
- Soil degradation increasing due to
- 1. Increased soil disturbance
- 2. Reduced organic additions
- 3. Heavy reliance on fertilizer inputs

Increasing water stress – low productivity

Source: International Water Management Institute Adapted from Kumar (2013)

Can we reverse soil degradation?

- Yes adopt right management options
- Conservation Agriculture (CA) Best Management Practices (BMP)

Conservation Agriculture!!

- CA is based on the following three principles:
- 1. Minimum soil disturbance
- 2. Increased soil cover
- 3. Crop rotations

Minimum soil disturbance

 Any reduction in tillage from the conventional practice is a form of CA, such as reduced tillage, stubble tillage, no-tillage.

Adapted from: Reicosky (2015)

Soil residue cover

- Essential to keep the soil covered with crop residue within the field (rather than removal and burning)
- Because cotton is a low crop residue generating crop, grow a cover crop either before or after cotton.
- Select cover crops that can grow on residual moisture and are drought hardy
- Preferential to grow legumes because of N benefits

Crop rotations

- 1. Avoid monocrop for long-term
- 2. Diversified crop system
- 3. Legumes part of the cropping system
- 4. Include cereals in the rotation provides benefit of food as well as fodder

What farmers are doing now?

- Excessive tillage operations
- Hand weeding!!! (production cost increased)
 - Burning crop residues

Why till the soils?

- Provide a good seed bed ensures a good crop stand.
- Free of weeds (possible by using preemergence herbicide)
- Summer plowing to reduce problem of nematodes and destroy overwintering population

Methodology

- Field Experiment continued over 9 years at the same site with a fixed plot layout
- Split Plot Design

Main Plots were Tillage Treatments

- 1. Conventional tillage (Farmers practice)
- 2. Reduced tillage₁ two hoeing
- 3. Reduced tillage₂ no hoeing

Sub-plots

- 1. Without residue
- 2. With residue (cotton crop and other crop; legume covers)

Results

Seed cotton yield as affected by tillage system over years (1996 to 2008)

- Reduced tillage systems with crop residue recycled yields higher for the Upland cotton cultivars as well as hybrids
- Vice versa for the Asiatic cotton cultivars

■ Hirsutum cultivar ■ Arboreum cultivar ■ Hirsutum hybrid Bla

Blaise and Ravindran (2003) Blaise (2006) Blaise (2011)

Results of on-farm trials

- 1. Increased boll retention
- 2. High seed cotton yields
- 3. Profitable

CT: Conventional Tillage

RT: Reduced Tillage

GM: Live Green manure In situ

N: Nitrogen rates (kg/ha)

Blaise (2011); Blaise et al. (2017)

Potential to save 20 kg N by in situ green manure

Impact of cover cropping studies (2012-17)

Seed cotton yield

- 1. Generally, Cover plots yielded equivalent to weed free
- 2. Pearl millet and Sorghum depressed seed cotton yield when grown as cover crops
- 3. Vice versa when applied as mulch
- 4. Polythene mulch hastened maturity
- 5. Newspaper mulch as effective as the weed free plot

Soil Analysis

- 1. Soil microbiological and biochemical properties were better in the cover crop plots than those without
- 2. SEM-XRD Analysis done shows better soil aggregation
- 3. The images also clearly indicate that C accretion increased
- 4. Furthermore, from the Analysis, O2 content and pore space was greater in the cover than without cover crop treatments

New cover and mulch options available

Legumes – native and indigenous

Cereals – sorghum, pearl millet

Oilseeds – sesame

Aromatic plants ???

Learning Lessons for Africa

- Water scarcity
- Impoverished soils/soil degradation
- Lot of similarities between Africa and the SAT of India –
- 1. Mostly rain dependent cotton
- 2. Manual labour dependence
- 3. Traditional farming systems
- However, traditional and inefficient tools still used in most parts of Africa

If Conservation Systems are so good, why not followed!!

- Plenty of challenges exist:
- 1. Crop residues competing uses for animal and fuel
- 2. If herbicide is not used how can we check the weeds
- 3. Alternative to fertilizer application
- 4. Slow adoption due to understanding
- Lack of evidence and data

anguaga ICAR

What is immediately needed?

- Identify cotton cultivars short duration and compact growth habit
- Research collaborative
- Efficient transfer of technology
- Cotton mechanization and small farm equipment to improve farm labour efficiency
- Identifying crops that are indigenous and fix Nitrogen
- Crops that are compatible with cotton for intercropping

Acknowledgements

- Thank ICAR for deputing me to attend the 14th SEACF
- Thank Dr. K R Kranthi, Technical Head, ICAC and the organizers for inviting me
- Thank Mr. Kai Hughes, ICAC and his team for financial support
- Thank the host organizers especially Lawrence,
 Washington and their team
- I am grateful to my fellow colleagues of the Crop Production Division (Drs. Manikandan, Savitha Santosh and Mr. RM Ramteke)

Thank you