Improvement and Identification of Drought- & Salinity-Tolerance on Cotton

Wuwei Ye, PHD

Yew158@163.com

State Key Laboratory of Cotton Biology, China Cotton Research Institute, CAAS, Anyang, China

Outline

- 1. Background
- 2. Germplasm identification
- 3. Mechanism of salinity tolerance
- 4. Salinity-tolerant genes isolated

Germplasm identification

Cotton germplasm (US cv China)

Species	US	China
G.hirsutum L.	3400	7522
G.barbadense L.	1600	565
G.herbaceum L.	190	17
G.arboreum L.	1700	378
G.hirsutum L.landrances	2200	350
others	250	41
total	9340	8873

Establishment of screen system on salt-/draught-stress

Stress identification and screening system

Cotton germplasm and salinity resistance in China

- 1. Germplasm: 8873.
- 2. Few of them are resistant to salinity, as well as to drought, chilling.
- 3. Distribution of salinity-resisted:

```
G.herbceum, 33.33%
```

G.barbadense, 3.86%

G.hirsutum, 0.09%

G.arboreum, none

Mechanism of salinity-tolerance

1. DNA methylation analysis under different types of salt

Fig. 2-1 Cotton seedlings under different salt stresses

A) Zhong07–dH₂O; **B)** Zhong07–NaCl; **C)** Zhong07–NaHCO₃; **D)** Zhong07–Na₂CO₃; **E)** ZhongS9612–dH₂O; **F)** ZhongS9612–NaCl; **G)** ZhongS9612–NaHCO₃; **H)** ZhongS9612–Na₂CO₃

2. DNA methylation analysis in different cotton accessions under salt stress

Table 1 Salt-tolerance level of different cotton accessions

Cotton accession	Germination ratio under salt treatment (%)	Germination ratio of control (%)	Relative germination ratio (RGR, %)	Salt tolerance level
Zhong 07	66.53	83.67	79.51 ^a	Tolerant
CCRI 35	64.32	84.38	76.23 ^a	Tolerant
CCRI 12	25.21	80.44	31.34 ^b	Sensitive

Table 2 DNA methylation patterns of different cotton accessions detected by MSAP

Туре	Enzyme digestion		the contract of the contract	Number or ratio of loci					
	Н	M		CCRI 35	CCRI 35			CCRI 12	
				Salt stress	Control	Salt stress	Control	Salt stress	Control
I	0	1	C <u>C</u> GG GG <i>C</i> C	339	838	410	977	793	588
п	1	0	CCGG or CCGG GGCCGGCC	658	792	679	496	375	222
Ш	0	0		1668	356	1191	447	311	838
IV	1	1	CCGG or CCGG GGCCGGCC	425	1104	410	770	694	525
Гуре	Hoci	no./pr	rimer combination	10.6**	26.2	12.8**	30.5	24.8*	18.4
Type :	II loc	ci no./p	rimer combination	20.6	24.8	21.2	15.5	11.7*	6.9
Type	III lo	ci no./	primer combination	52.1**	11,1	37.2**	14	9.7**	26.2
Methy	latio	n loci	no./primer combination	83.3**	62.1	71.3**	60	46.2	51.5
Total	meth	ylation	loci (I + II + III)/ratio to total loci	2665**/ 86.2 %	1986/ 64.3 %	2280**/ 84.8 %	1920/ 71.4 %	1479/ 68.1 %	1648/ 75.8 %
Total	ampl	ified k	oci (I + II + III + IV)	3090	3090	2690	2690	2173	2173

3. Epigenetic mechanisms of salt Tolerance and heterosis in upland cotton

Table 4 Salt-tolerance level of CCRI29 and its two parents

Cotton material	Salt-tolerance index (%)*	Salt-tolerance level
CCRI29	60.84a	Tolerant
P1	54.50b	Tolerant
RP4	42.39c	Sensitive
Mid-parent heterosis of salt-tolerance level	25.59	

Fig.2-6 DNA methylation patterns of CCRI 29 detected in CE with the primer combination

4. lncRNAs responding to drought

- •10,820 lncRNAs of high-confidence were observed, Small RNAs revealed that 196 lncRNAs may be the precursors to small RNAs, most of which (35.7%, 70) were miRNAs.
- •LncRNAs may be likely to involve in regulating plant hormones pathway in response to drought stress.

5. DNA methylation helps to understand the responding to salt stress

- •Salt-tolerant cotton might have a mechanism of increasing the methylation level when responding to salt stress;
- •Increasing level of DNA methylation and different methylation patterns might play important roles in active responding to salt stress in cotton.

Cotton accession	Germination ratio under salt treatment (%)	Germination ratio of control (%)	Relative germination ratio (RGR, %)	Salt tolerance level
Zhong 07	66.53	83.67	79.51°	Tolerant
CCRI 35	64.32	84.38	76.234	Tolerant
OCRI 12	25.21	80.44	31,34 ⁶	Sensitive

Турс	Enzyme digestion		Methylation pattern	Number or ratio of loci									
	H	M		CCRI 35		Zhong 07		CCRI 12					
				Salt stress	Control	Salt stress	Control	Salt stress	Control				
1	0	1	cos	339	838	410	977	793	588				
			00 <u>0</u> 0										
п	1	0	CCDG to CCGG	658	792	679	496	375	222				
							GOCC-GOCC						
ш	0	0	CCOR or CCOR or CCOR or CCOR or	1668	356	1191	447	311	838				
			OGCC-GGCC-OGCC OGCC-OGCC										
IV	Ŧ	1	CCOG er C <u>C</u> GG GCC-GGCC	425	1104	410	770	694	525				
Type	Hoci	по/ре	iner combination	10.6**	26.2	12.8**	39.5	24.6*	18.4				
Type	II loc	1 80./0	olmer combination	20.6	34.8	21.2	15.5	11.7*	6.9				
Type	III lo	ci no./	primer combination	52.1**	11.1	37.2**	14	9.7**	26.2				
Methylation loci no homer combination			83.3**	62.1	71.3**	60	46.2	51.5					
Total methylation loci (I + II + III)/ratio to meal loci			2665**) 86.2 %	1986/ 64.3 %	2280**/ \$4.8 %	1920/ 71.4 %	1479/ 68.1 %	16487 75.8 %					
Total.	ampl	med k	xi (I + II + III + IV)	3090	3090	2690	2690	2173	2173				

Genes of salinity-tolerance

Transgenetic seeds (2016)

No.	receptor	genes	No.of seeds
1	ccri45	GhVP	180
2	ccri63	GhVP	60
3	ymz21	GhVP	96
4	sGK958	GhVP	87
5	ccri45	GhSAMS	99
6	ccri63	GhSAMS	120
7	ymz21	GhSAMS	78
8	sGK958	GhSAMS	56

Transgenetic seeds screened under the salinity stress(0.4%NaCl)

Some salinity toeralant races

Race No.	Salinity resistance index/%	Salinity resistance level	Race No.	Salinity resistance index/%	Salinity resistance level
ccri9806	76.5	resistant	804129	58.2	tolerant
806081	74.9	tolerant	805021	55.3	tolerant
810151	72.3	tolerant	810011	50.6	tolerant
807071	72.3	tolerant	804137	64.3	tolerant
807017	71.2	tolerant	805133	63.2	tolerant
810121	65.3	tolerant	806011	58.9	tolerant
807067	55.2	tolerant	ccri9612	21.5	sensitive

salinity tolerant CRI9806

salinity sensitive CCRI12

CRI9806 grown in the saline(0.4%NaCl) land.

Ccri9806----0.52% saline land, Changzhou, Hebai province

control

ccri9806

1	The draft genome of a diploid cotton Gossypium raimondii	Nature Genetics	2012,44(10):1098- 1103
2	Genome sequence of the cultivated cotton Gossypium arboreium	Nature Genetics	2014,46, 567-574
3	Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution	Nature biotechnology	2015,33(5):524-530
4	Genome-wide Identification and Structural Analysis of Pyrophosphatase Gene Family in Cotton	Crop Science	2016,56:1-10
5	Genome-Wide Analysis of Long Noncoding RNAs and Their Responses to Drought Stress in Cotton (G. hirsutum L.)	PLOS ONE	2016,11(6):e0156723
6	Mining and Analysis of SNP in Response to Salinity Stress in Upland Cotton (Gossypiumhirsutum L.)	PLOS ONE	2016,11(6):e0158142
7	Genome-wide Identification and analysis of the stress- resistance function of the TPS (Trehalose-6-Phosphate Synthase) gene family in cotton	BMC Genetics	2016,17:54
8	In vitro regeneration protocol for synthetic seed production in upland cotton (Gossypium hirsutum L.)	Plant Cell, Tissue & Organ Culture	2016,123:673-679
9	Genome-wide identification and expression analysis of CIPK genes in diploid cottons	Genetics & Mol. Research	2016,15(4)gmr1504 8852
10	Epigenetic mechanisms of salt tolerance and heterosis in Upland cotton (Gossypium hirsutum L.) revealed by methylation-sensitive amplified polymorphism analysis	Euphytica	2016, 208:477–491
11	Cloning of SjCA gene and its expression analysis on upland cottons	Journal of Biomedical Engineering and Informatics	2016, 2(2):150-162

Thanks!!