

COTTON YIELDS - Reasons for Regional Differences • Level of production technology/research • Production conditions - favorable and less favorable • Production systems - input supply • Adoption of technology - weak extension

COTTON YIELDS - Reasons for Inter Country Differences Same

HURDLES FOR YIELD IMPROVEMENT Pest damage - some loss is there even under perfect pest control Natural shedding Picking losses Ginning losses

HIGH END YIELD IMPROVEMENT HURDLES Imbalance between auxin and anti-auxin hormones Imbalance between fruiting forms and carbohydrate supply C₃ nature - photorespiration Higher light intensity Low CO₂

HIGH END YIELD IMPROVEMENT SOLUTIONS

- Eliminate photorespiration, convert cotton into C₄ (Problem: Same enzyme that catalyzes photorespiration involved in CHO fixation)
- Maintain balance between auxin and anti-auxin hormones
- No picking and ginning losses

HIGH END YIELD IMPROVEMENT SOLUTIONS

- Methanol application
 Increased CO₂ assimilation
 Increase leaf conductance
 - · Results controversial

HIGH END YIELD IMPROVEMENT SOLUTIONS

- CO₂ enrichment
 Increased biomass vegetative and yields
 Increased water use efficiency

 - Increased root growthControversial results

BIOTECH COTTON - 2008/09

= 48% Area Production = 54% = 52% Trade

BIOTECH COTTON AND YIELD IMPROVEMENT

- · As such NO, but through better crop protection YES
- Future approaches
 - Improve photosynthetic rate
 - · Chloroplast efficiency higher expression
 - Delaying leaf senescence (Loss of cell's power to divide and grow)

