

The Textiles **OBSERVER**

ISSUE 3, VOLUME 1
FEBRUARY 2026

**Circularity in
Textiles: The
Systems
Framework**

**The Benefits of
Participating in
CSITC Round
Trials**

**Textiles Policy
and Investment
as Priorities**

Textiles Policy and Investment as Priorities

*By Kanwar Usman
ICAC Head of Textiles
Editor, Textiles Observer*

It is a pleasure to introduce the third edition of the ICAC Textiles Observer at a time when the organization is steadily advancing its engagement with textiles. In a relatively short period, ICAC has significantly strengthened its focus on policy coherence, investment readiness, and system performance across the cotton–textile–apparel value chain, working closely with member governments to translate strategic frameworks into scalable, investment-oriented outcomes.

Central to this evolution is the first-ever Global Cotton and Textiles Investment Summit, which will be hosted by the Government of Uzbekistan. The Summit is being designed as a dedicated global platform to connect cotton- and textile-producing countries with international investors, financial institutions, and technology providers, with a clear emphasis on investment facilitation, joint ventures, and project-level engagement. In parallel, ICAC is supporting its Member Governments in strengthening national textiles and apparel policy frameworks, recognizing that credible and well-sequenced policy is a prerequisite for mobilizing sustainable, long-term investment.

Looking ahead, this policy-based approach will enable ICAC to support member governments in developing and implementing forward-looking textiles and apparel policies, while simultaneously preparing them for effective participation in the Global Cotton and Textiles Investment Summit. Through evidence-based diagnostics, structured public–private dialogue, and targeted policy and investment interventions, ICAC will help create predictable, competitive, and investment-ready environments that strengthen domestic value addition, employment generation, and export performance, and position countries more effectively within regional and global textile and apparel value chains.

Reflecting these priorities, the 83rd ICAC Plenary Meeting will take place March 23–24, 2026. Textiles will remain firmly embedded within the Plenary agenda, with two dedicated sessions focusing on “Facilitating Investment in the Textiles and Apparel Value Chain in Emerging Markets,” and “Crafting National Textiles Policies that Encourage Innovation and Enhance Global Competitiveness.” Together, these sessions will address critical enablers of textile sector development, highlighting the role of policy, investment, and innovation in strengthening competitiveness and value addition across ICAC member countries.

In addition, this edition of ICAC Textiles Observer brings together two articles that address core enablers of a future-ready textiles sector: measurement integrity and system-level circularity. Together, they reinforce ICAC’s emphasis on moving beyond narratives toward measurable performance, enforceable standards, and long-term value creation.

The Benefits of Participating in CSITC Round Trials

By Dr. Marinus (René) van der Sluijs
Principal Consultant, Textile Technical Services
Current Chair of CSITC

Introduction

Fiber quality is of paramount importance, and there is international consensus that the measurement of cotton fiber properties by the traditional method of subjective classing should be replaced by objective measurement using high-volume testing instruments. There are, however, technical and operational issues that must be addressed to ensure that classing facilities and other testing laboratories are standardized and provide dependable, consistent, and repeatable results.

One way to achieve this is through participation in Interlaboratory Round Trials. This approach led to the creation of the Task Force on the Commercial Standardization of Instrument Testing of Cotton (CSITC) by the International Cotton Advisory Committee (ICAC) in 2003.

The main objectives of the Task Force are to:

1. Facilitate the widespread use of instrument testing systems at the producer level while upholding standards and tolerances that maintain the integrity of high-quality testing
2. Facilitate the adoption of instrument testing standards and procedures used by USDA-AMS for testing facilities worldwide
3. Introduce instrument testing language into cotton trading, replacing traditional grade or type descriptions with objective instrument values
4. Develop, update, and maintain guidelines for standardized instrument testing

CSITC has been conducting Round Trials (RTs) since 2007 to support international standardization. This article provides a brief overview of the process, participation, evaluation, and benefits of these trials for the various sectors of the cotton industry.

How Do the Round Trials Work?

Four RTs are conducted each year. Each trial consists of a set of four homogeneous Upland cotton samples from the USDA Standard Cotton Program, which are distributed to participating facilities during the first week of each quarter. Each sample is tested for five days by each participating instrument at each facility and assessed for six primary fiber properties.

The six evaluated properties are micronaire, strength, length, length uniformity, and color, expressed as reflectance (Rd) and yellowness (+b). Secondary properties—such as trash count and area, short fiber index, and maturity—are also assessed but are not currently included in the Overall Evaluation Result (OER).

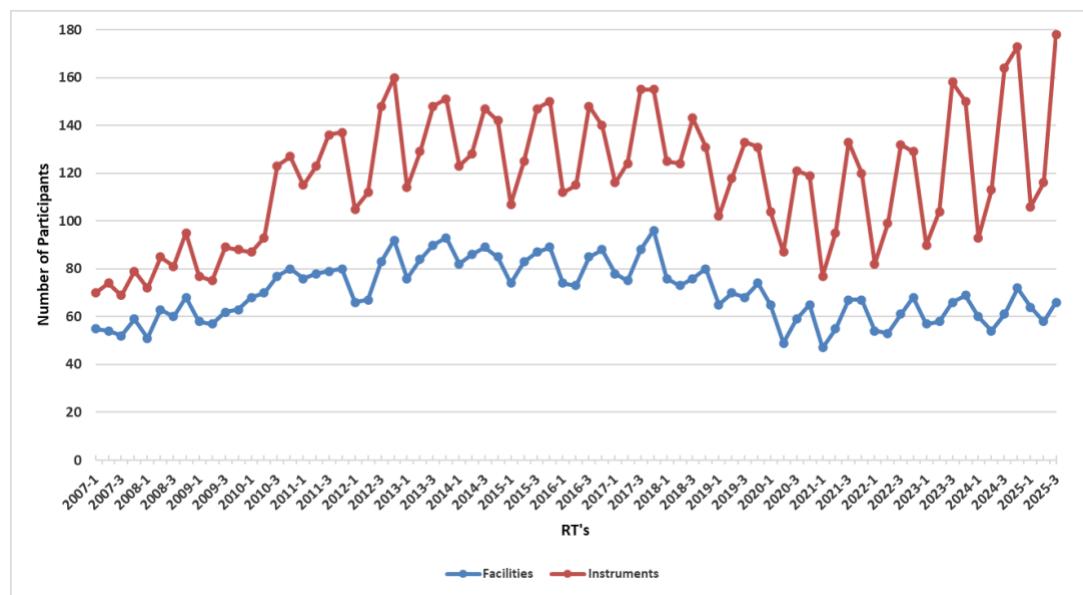
Results from all tests are collected and evaluated by the Bremen Fiber Institute. Each instrument receives an OER, which combines all evaluated fiber properties to indicate overall performance relative to other instruments. Instruments are also ranked for each of the six primary fiber properties. These rankings are based on how closely the mean value of each instrument matches the grand mean of all participating instruments, after excluding outliers. A score of zero represents perfect agreement, while a score of 1 indicates that the average deviation has reached the tolerance limit and is therefore unacceptable.

The benefits of participation in CSITC RTs, compared with other round trials, include:

1. An independent and objective comparison with more than 100 instruments worldwide
2. A single OER value indicating overall instrument performance
3. A detailed, instrument-specific report identifying deviations and targeted action items for improvement
4. Results based on evaluation of all individual data points, incorporating both accuracy and precision (precision is evaluated but not included in rankings)
5. A certificate of participation demonstrating commitment to quality management
6. A certificate showing performance relative to the median of all participating instruments.

Participation

Facilities may register at any time and will begin participation at the start of the next quarter. Participation is assumed for four quarters per year unless a facility is not operational for the full year. Payment is per sample set, and up to four individual instruments may be evaluated per set.


As shown in Figure 1, participation increased steadily from 2007 to 2014 in both the number of facilities and instruments. This was followed by a period of relative

stability through 2018, after which participation declined, largely due to COVID-19 and the associated economic downturn. Since 2021, participation has shown a slight increase.

While the number of participating facilities has remained relatively stable since 2021, the number of instruments and sample sets has increased, indicating that facilities are submitting more instruments for evaluation. Seasonal variations are also evident, with participation typically lower at the beginning of the year and increasing in subsequent rounds. In 2023, a total of eighty-one facilities from thirty-two countries participated across the four RTs.

On average, 73% of participants are involved in production and classing, 19% represent research institutions, government agencies, or instrument manufacturers, and only 9% are spinning mills. Participation by spinners is considered low, and CSITC is actively exploring ways to increase engagement from this sector.


Figure 1. Number of facilities and instruments participating from 2007 to 2025

Results

As shown in Figure 2 below, results from the early years (2007–2011) were below expectations, as laboratories required time to improve procedures and practices. From 2012 onward, results improved significantly. With participant numbers remaining relatively consistent, the median OER steadily decreased from approximately 0.50 to 0.35. This trend indicates continued progress in the accuracy and reliability of testing processes among participating facilities and instruments.

Figure 2. Median OER for all instruments from 2007 to 2025

Benefits

The potential benefits of CSITC RT participation for various industry sectors include the following:

Classing and Testing Facilities

- Provide accurate, dependable, and consistent results
- Maximize returns for growers and value for spinners
- Enhance reputation within the cotton industry
- Become a preferred service provider
- Meet interlaboratory trial requirements for ISO 17025 and ISO 9002 certification
- Satisfy participation requirements for ICA/Bremen certification
- Serve as facilities for technical arbitration
- Support accurate government and industry reporting
- Enable breeders to make confident variety selection decisions

Growers / Producers

- Access accurate data to maximize returns
- Enable reliable assessment of growing practices

- Add value, as better-classified fiber quality commands higher prices per pound or bale
- Support explanation of premiums and discounts
- Provide feedback to ginners

Trading

- Maximize returns
- Assist in determining premiums and discounts for growers
- Support dispute resolution with growers and spinners
- Enable construction of uniform fiber lots
- Supply spinners with consignments meeting required fiber properties

Spinners

- Avoid receiving cotton unsuitable for required end uses
- Ensure delivered cotton meets specifications
- Ascertain and manage variability
- Support control of blending, mixing, nep count, ends down, comber noil, waste, yarn and fabric quality, and processing performance
- Adjust technical specifications (e.g., spinning system, TPI, noil %, rpm)
- Determine control limits
- Make quality claims based on accurate information

Conclusion

For the cotton industry to fully transition to objective measurement using high-volume testing instruments, technical and operational challenges must be addressed to ensure dependable, consistent, and repeatable results across all testing facilities. Participation in CSITC Round Trials offers a proven pathway to achieving this goal.

Key advantages include independent and objective comparison with more than one hundred instruments worldwide, comprehensive instrument-specific reports analyzing both accuracy and precision, and the calculation of a single Overall Evaluation Result indicating instrument performance. The benefits for the various sectors of the cotton industry have been outlined, demonstrating the broad value of participation in CSITC RTs.

Need More Information?

Please contact csitcsecretariat@icac.org or Ms. Maria Borisova at maria@icac.org.

Circularity in Textiles: The Systems Framework

*By Kanwar Usman
ICAC Head of Textiles
Editor, Textiles Observer*

Table of Contents

1 WHY CIRCULARITY, WHY NOW: SYSTEM FAILURE AND STRATEGIC IMPERATIVE IN TEXTILES

- Scale Expansion and the Emergence of Textile Waste as a Systemic Risk
- From Linear Expansion to Structural Limits
- Circularity as System Redesign, Not Damage Control
- Circularity as a Systemic Economic and Strategic Imperative
- Why the Linear Textile Economy Can No Longer Continue

2 FOUNDATIONS OF CIRCULARITY: BIOLOGICAL AND TECHNICAL CYCLES IN TEXTILES

- Biological Cycle: Regeneration Through Natural Systems
- Technical Cycle: Industrial Circulation and Value Retention
- Cycle Alignment as the Operating Rule of Textile Circularity

3 MATERIAL PATHWAYS IN A CIRCULAR TEXTILE SYSTEM

- Cotton in the Circular Economy: System Conditions
- Polyester and Synthetic Fibers: Technical Cycles and Structural Constraints
- Recycled Polyester (rPET): Structural Limits of Bottle-to-Fiber Pathways
- Bio-Based Polyester: Input Substitution Without Circularity

4 WHY CIRCULARITY FAILS AT SCALE: BLENDS, RECYCLING LIMITS, AND THE DESIGN BOTTLENECK

- Blended Textiles as a Structural Barrier

Textile-to-Textile Recycling: Technical Feasibility vs System Reality Design as the Determinant of Circular Outcomes

5 USE-PHASE CIRCULARITY AND THE ECONOMICS OF CIRCULAR TEXTILES

Circular Business Models and Product Use

The Economics of Circular Textiles

6 GOVERNANCE, DATA, AND MARKET POWER: MAKING CIRCULARITY ENFORCEABLE

Digital Infrastructure for Circularity: Traceability, Product Passports, and Data Systems

Policy Transformation and Extended Producer Responsibility

Brands and Retailers: Market Power and Circular Outcomes

7 SOCIAL EQUITY, NATIONAL SYSTEMS, AND FINANCING FOR CIRCULAR SCALE

Employment, Livelihoods, and Social Equity in Circular Textiles

Financing Circular Textiles at Scale

8 MEASUREMENT, RISK, AND THE LIMITS OF CIRCULAR OPTIMISM

Measuring Circularity: What Current Tools Miss

Risks, Trade-Offs, and Unintended Consequences

9 FROM CLAIMS TO SYSTEM PERFORMANCE: THE FORWARD AGENDA

Cotton and Polyester in System Perspective

Forward Agenda: What Scaling Requires

10 REFERENCES

Chapter 1

WHY CIRCULARITY, WHY NOW: SYSTEM FAILURE AND STRATEGIC IMPERATIVE IN TEXTILES

The global textile sector has reached a structural inflection point. A system engineered for speed, scale, and low unit cost is colliding with environmental limits, tightening regulation, and rising economic exposure. For more than a century, the linear model of extraction, production, consumption, and disposal delivered affordability, employment, and industrial development. At today's scale and material intensity, that same model is increasingly fragile. Emissions, waste volumes, pressure on land, water, and energy, and the spread of microplastic pollution reveal weaknesses that incremental efficiency gains cannot repair.

Circularity has therefore moved from voluntary ambition to strategic necessity. The linear textile economy cannot continue to operate as designed when material throughput grows faster than the system's ability to retain value, govern impacts, and manage end-of-life outcomes. The urgency is not driven by a simple shift away from natural fibers. It is driven by absolute growth in total material volumes, a geographic rebalancing of demand, and a fundamental reconfiguration of the fiber mix.

Crucially, this urgency is not driven by a simple shift away from natural fibers but by absolute growth in total material throughput and a reconfiguration of the sector's material base. Global textile fiber consumption increased nearly eightfold from approximately 15.2 million tonnes in 1960 to 117.3 million tonnes in 2025. This growth was not evenly distributed; fiber consumption in developed economies rose from 7.7 million tonnes to 38.7 million tonnes, while demand in developing economies expanded far more sharply, from 4.8 million tonnes to 74.1 million tonnes, reflecting population growth, rising incomes, and industrial relocation.

Regional patterns underscore the shifting geography of textile consumption. In 1960, Africa accounted for just 0.33 million tonnes of global fiber use and Asia 4.8 million tonnes. By 2025, Africa's consumption had increased to 3.4 million tonnes, while Asia's fiber use surged to 62.2 million tonnes, making it the dominant center of global textile demand. These shifts highlight that future system pressure, waste generation, and circularity challenges will be concentrated overwhelmingly in emerging and developing regions.

Per-capita consumption trends reinforce this structural transformation. Average global fiber consumption increased from approximately 5.0 kilograms per person in 1960 to 14.4 kilograms per person in 2025. In developed economies, per-capita fiber use rose from 12.1 kilograms to 42.2 kilograms, reflecting high-income consumption patterns and saturation. In developing economies, per-capita consumption increased

from 2.3 kilograms to 11.1 kilograms, driven largely by Asia, where per-capita fiber use rose from 2.2 kilograms to 14.8 kilograms. Africa's per-capita consumption increased more modestly, from 1.2 kilograms to 2.3 kilograms, underscoring both its lower current contribution to global consumption and its latent growth potential.

A closer examination of fiber composition reveals why circularity has become a structural necessity. In 1960, global cotton consumption stood at approximately 10.3 million tonnes, compared with 4.7 million tonnes of non-cotton fibers. On a per-capita basis, cotton accounted for 3.41 kilograms per person, while non-cotton fibers accounted for 1.58 kilograms, meaning that natural fibers dominated material flows at relatively low overall consumption levels. By 2025, total cotton consumption increased to approximately 26.0 million tonnes, but per-capita cotton use declined slightly to 3.19 kilograms, reflecting population growth rather than contraction in absolute output. By contrast, non-cotton fibers expanded dramatically, reaching approximately 91.3 million tonnes in 2025, with per-capita consumption rising from 1.58 kilograms in 1960 to 11.2 kilograms. Over the period from 1960 to 2025, cotton exhibited a marginally negative per-capita compound annual growth rate of approximately -0.1%, while non-cotton fibers expanded at a compound annual rate of around 3.1%. The circularity challenge is therefore driven by the rapid scale-up of low-cost synthetics and the system constraints they introduce, including persistence in the environment, complex blends, and difficult recovery pathways at scale.

Together, these trends show that the circularity problem is not a niche waste issue but a system-load problem driven by volume, geography, and materials. Effective circular strategies must start from these realities to be credible, equitable, and aligned with development priorities

Scale Expansion and the Emergence of Textile Waste as a Systemic Risk

The apparel and textile sector has expanded rapidly over the past two decades, reaching an estimated market value of \$1.8 trillion by 2025 with annual production exceeding 100 billion garments. Declining production costs, accelerated fashion cycles, and rising per-capita consumption have increased material intensity and shortened product lifetimes. Projections indicate apparel consumption could rise by more than 60% by 2030 (around 105 million tonnes) and could exceed 160 million tonnes by 2050 if current trajectories persist.

As production has scaled, textile waste has risen rapidly, not only because more garments are produced, but because garments are used less and discarded faster. Around 90 million tonnes of textile waste are generated each year. Recovery has not scaled with throughput. Roughly 13–15% of clothing and textiles enter any form of recycling process, while about 85% are landfilled or incinerated. Even where textiles are collected, most do not return to apparel: around 12% are downcycled into lower-

value uses such as insulation, wiping cloths, padding, or rugs, while around 1% is recycled into new garments or other medium- to high-value textile products.

From Linear Expansion to Structural Limits

For more than a century, textile growth followed a linear logic: extract resources, manufacture products, sell at volume, dispose at end of use. That model relied on assumptions that no longer hold, including perceived resource abundance, weak constraints on emissions and pollution, low energy and transport costs, and limited cross-border governance of waste.

Today, material flows expand faster than reuse, repair, and recovery capacity. Shortened product lifetimes accelerate value destruction during use, while the dominance of persistent synthetics extends environmental burdens across decades. These pressures are amplified by a highly dispersed global value chain linking agriculture and petrochemicals to manufacturing, logistics, retail, and waste systems across multiple jurisdictions. Shocks in energy, water, climate policy, carbon rules, trade requirements, or waste governance can therefore propagate rapidly, converting environmental pressure into direct cost, compliance, and investment risk.

Circularity as System Redesign, Not Damage Control

Circularity has gained prominence because it addresses the system's architecture, not only downstream symptoms. It reframes textiles as material systems whose outcomes are shaped upstream through design, material choice, expected use intensity, and recovery compatibility. In a high-volume sector with short product lifecycles, these early decisions determine whether value is retained across multiple cycles or destroyed after brief use.

Use patterns illustrate why downstream solutions alone cannot carry the transition. Over the past 15 years, average clothing utilization has declined by roughly 35%, even as global apparel production has doubled. Consumers purchase about 60% more garments than in the early 2000s, yet keep them for roughly half as long. Many garments are worn only 7–10 times before disposal. When short lifetimes are embedded into design and pricing, functional value is lost long before end-of-life management begins.

This is why use-phase circular strategies often outperform recycling as a climate and resource lever. Evidence indicates that extending a garment's active life by as little as nine months can reduce its environmental footprint by around 30%, frequently exceeding what recycling alone can achieve. Such gains require garments designed for durability, repair, repeated use, and continued desirability across cycles. Recycling remains necessary, but it is a downstream intervention that acts after value has already been degraded.

Circularity as a Systemic Economic and Strategic Imperative

The strategic case for circularity is reinforced by changing market-access conditions. Textiles are becoming a priority sector in circular economy, sustainability, and climate policy frameworks, particularly in major consumer markets. Requirements related to durability, design, traceability, producer responsibility, and environmental performance are increasingly shaping competitive conditions across the value chain. What was once voluntary is becoming embedded in procurement expectations, investment criteria, and regulatory compliance.

Circularity is not synonymous with contraction. Textiles remain central to jobs, exports, and industrial development, particularly in emerging and developing economies. Abrupt reductions in production or demand would carry serious social costs. Circular economy instead offers an alternative pathway: retaining value through longer use, service models, and credible recovery, while reducing exposure to resource volatility, compliance risk, and unmanaged end-of-life burdens.

Why the Linear Textile Economy Can No Longer Continue

The failure of the linear textile model is structural. Waste is generated by design. Most products are not conceived for durability, repair, disassembly, reuse, or credible recovery, and end-of-life pathways remain dominated by landfilling, incineration, and informal disposal, destroying embedded value and shifting burdens across time and geography.

The model is also increasingly fragile. Dependence on land, water, energy, and chemical inputs exposes producers to climate impacts, supply disruptions, and rising compliance costs. Pollution can persist beyond product use, and emissions accumulate across complex supply chains, many of which remain locked into fossil-based energy systems.

Economically, linearity extracts value once and discards it, forfeiting opportunities for value retention through longer use, repair, refurbishment, remanufacturing, and higher-quality recovery. Socially, costs are externalized and accountability is fragmented, with burdens disproportionately borne by regions with limited regulatory capacity and waste infrastructure. At today's scale, incremental efficiency gains cannot correct these structural failures. The evidence points to one conclusion: the linear textile economy is no longer environmentally, economically, or socially viable. Circular economy is therefore not an optional enhancement. It is the necessary transition away from a system that can no longer sustain itself.

Chapter 2

FOUNDATIONS OF CIRCULARITY: BIOLOGICAL AND TECHNICAL CYCLES IN TEXTILES

Circularity in textiles begins with one discipline: materials must be designed to move through the recovery system that matches their physical behavior and environmental fate. Circular economy is therefore a system-design framework grounded in material science and lifecycle logic, not a synonym for recycling and not a claim determined only at end of life.

The circular economy framework describes two distinct cycles that structure credible textile circularity: the biological cycle and the technical cycle. Understanding these cycles, and the operating rule that aligns products to one or the other, is essential for evaluating materials, products, and policy choices in real systems.

Biological Cycle: Regeneration Through Natural Systems

The biological cycle applies to textile materials that can safely return to natural systems after use without leaving persistent pollution. These materials originate from renewable biological sources and, under appropriate conditions, can biodegrade into non-toxic components that support nutrient cycling and ecosystem regeneration. The objective is not better disposal, but a designed pathway in which biological resources can exit the economy without becoming long-term environmental liabilities.

In textiles, biological cycling is regenerative rather than extractive. It links circular strategy to land stewardship, agricultural practice, and chemical safety, shifting the emphasis from waste management toward restoration of natural capital. Where biological materials are produced responsibly and processed with safe chemistry, this pathway can reduce long-run pollution risk and lower dependence on energy-intensive recovery infrastructure.

However, cycle eligibility is determined by design and processing, not by fiber origin alone. Many products marketed as natural cannot credibly participate in biological cycling because dyes, finishes, coatings, and additives can inhibit biodegradation or introduce toxicity. Construction choices also matter: blends, elastane, synthetic sewing thread, and composite structures can block safe biological return even when the base fiber is biodegradable. In those cases, the product functions operationally as waste rather than as a regenerative material flow.

Biological cycling also has practical constraints. Many textiles biodegrade only under controlled conditions that are rarely present in landfills or unmanaged environments. Composting and anaerobic digestion can provide managed routes for biological return, but they are residual pathways that follow higher-value strategies such as

durability, repair, reuse, and — where appropriate — fiber recovery. Composting does not preserve textile value and should therefore be treated as a final route for products that can no longer remain in use or be materially recovered.

For policy and system design, biological cycling demands more than choosing a natural fiber. It requires transparency, restricted chemistry, and product architectures that enable safe decomposition when biological return is the intended end-of-use pathway.

Technical Cycle: Industrial Circulation and Value Retention

The technical cycle applies to materials that cannot safely return to the biosphere and must be managed within industrial systems. In textiles, this includes most synthetics such as polyester, nylon, acrylic, elastane, and many composite constructions. Technical cycling retains value by keeping products, components, and polymers in use through repeated cycles of use, reuse, repair, refurbishment, and remanufacturing, with recycling used when higher-value options are exhausted. Disposal represents system failure because it destroys embedded value and locks the system into continuous demand for virgin inputs.

The technical cycle has become central because synthetic fibers constitute the majority of global fiber demand, with polyester as the largest single fiber class. This material reality increases dependence on industrial recovery: synthetics persist in the environment and do not regenerate through natural processes. The technical cycle is therefore the primary pathway through which synthetic textiles can be contained, circulated, and prevented from becoming long-lived pollutants.

In practice, technical cycling depends on demanding infrastructure across the recovery chain: collection systems, sorting capacity, identification and separation, pre-processing, and recycling pathways capable of producing usable outputs at scale. These systems are capital-intensive and operate under strict feedstock requirements. Product complexity — especially blends, elastane, coatings, prints, and dye chemistry — reduces sortability and constrains recycling. Mechanical recycling often degrades output quality and pushes material toward lower-value applications. Chemical recycling can, in principle, regenerate polymers closer to virgin quality, but it remains constrained by cost, energy requirements, contamination sensitivity, and limited industrial scale.

As a result, technical cycling often delays material loss rather than eliminating it. Even where collection exists, downcycling into insulation, wiping cloths, padding, and industrial nonwovens remains common, while fiber-to-fiber recycling remains marginal at the system level. Technical cycling can reduce demand for virgin

petrochemical inputs, but it functions credibly only when product design, material selection, and infrastructure investment align with real recovery performance.

Cycle Alignment as the Operating Rule of Textile Circularity

The distinction between biological and technical cycles is not a conceptual detail. It is the operating rule that determines whether circularity works in practice or collapses into leakage and disposal. A circular system performs only when products are engineered to follow a recovery pathway they can realistically complete.

Practically, alignment means that products intended for biological cycling are designed and processed to biodegrade safely under real conditions, without toxic residues or persistent synthetic barriers. It also means that products intended for technical cycling are designed for repeated use and credible recoverability, with simplified compositions and constructions that support sorting, disassembly, and processing.

Misalignment is most visible in complex constructions that defeat both cycles simultaneously. Cotton–polyester blends, polyester with elastane, coated fabrics, laminates, resin-treated textiles, and heavily finished products often cannot biodegrade safely, yet also fail recycling due to separation difficulty, contamination, and process limits. Even when collected, such products are typically downcycled or diverted to incineration and landfill. In these cases, circularity exists as an intention but fails as a system outcome.

Alignment determines whether infrastructure investment produces real circular capacity or expensive dead ends. Recovery facilities require predictable feedstocks of known composition and manageable contamination. If markets continue to produce products structurally incompatible with sorting and recovery capability, recycling investments will underperform and disposal will remain the default outcome, regardless of targets.

This is why alignment must be enforced upstream through design rules and incentives. Products intended for technical cycling should minimize material complexity and contamination and enable disassembly where feasible. Products intended for biological cycling should use restricted chemistry, avoid persistent additives, and prevent synthetic barriers from being embedded into otherwise biodegradable structures.

The implications for policy and finance follow directly. Regulatory tools that do not distinguish between biological and technical systems can penalize regenerative pathways or over-reward “recyclable on paper” designs that are unrecoverable at scale. Financing strategies that prioritize processing capacity without securing feedstock discipline and design alignment risk locking capital into low-yield, high-

rejection systems. Measurement frameworks that treat collection or recycled content as sufficient proxies for circularity can validate downcycling and obscure leakage.

For circularity to be credible in textiles, cycle alignment must be explicit in standards, incentives, and assessment methods. Circular outcomes depend less on ambition than on whether products are engineered to move through the cycle they claim to belong to.

Chapter 3

MATERIAL PATHWAYS IN A CIRCULAR TEXTILE SYSTEM

Material choice is a structural decision in a circular textile economy. Fibers differ in environmental fate, recovery feasibility, and failure-mode consequences, and those differences determine what circularity can realistically deliver. This section applies the cycle framework to real material pathways: cotton as a biologically aligned fiber when integrity is preserved; polyester and other synthetics as technical-cycle materials whose outcomes depend on industrial containment; and two widely promoted “transitional” approaches within the polyester system, bottle-derived recycled polyester and bio-based polyester.

Cotton in the Circular Economy: System Conditions

Cotton occupies a distinct position in circular textile systems because it is a plant-based, cellulosic fiber that can align with biological cycling when integrity is preserved. Unlike fossil-based synthetics, cotton does not inherently persist as long-lived waste when recovery fails. That advantage, however, is conditional: it depends on whether biodegradability and chemical safety survive real processing and product construction, and whether systems can route cotton streams into appropriate pathways.

Cotton’s biodegradability is not a guarantee; it is a function of conditions. Degradation rates vary with moisture, oxygen availability, temperature, and microbial activity, and they can be inhibited by dyes, finishes, coatings, resin treatments, and functional additives. Blends and construction choices can also compromise biological return. In practice, cotton’s circular advantage holds only when fiber choice, chemistry, and product architecture remain aligned across the lifecycle. This conditionality contrasts fundamentally with synthetic fibers, whose environmental persistence and pollution risk are inherent to the material rather than dependent on management quality.

Cotton also differs materially from synthetics in pollution persistence. Synthetic textiles shed plastic microfibers during manufacturing, wear, laundering, and disposal, contributing to long-term accumulation across ecosystems. Cotton sheds fibers too, but cellulosic fibers biodegrade and do not persist or bioaccumulate in the same way as plastics. As regulation shifts from waste to pollution, this distinction increasingly functions as a long-run risk and compliance factor.

Upstream, regenerative cotton can strengthen cotton’s role in circular systems by improving resilience at the production stage. Practices that increase soil organic

matter, improve nutrient cycling, carbon sequestration and enhance water retention can reduce dependence on external inputs and improve stability under climate stress. For credibility in policy and investment contexts, regenerative cotton is strongest when framed as soil restoration and climate resilience. Carbon benefits can be material, but magnitude and permanence vary by geography, baseline conditions, and measurement methods.

End-of-Life Pathways for Cotton

Cotton's end-of-life performance depends less on a single best technology than on whether systems can route different cotton streams into appropriate pathways. A practical hierarchy is widely applied: reuse typically delivers the highest benefit, followed by recycling, then incineration with energy recovery, with landfill least favorable. The principle is value retention: the more embedded value preserved (product, fabric, fiber, then feedstock), the stronger the outcome tends to be.

Reuse and lifetime extension preserve product function and avoid replacement production. Cotton's comfort and acceptability make many products suitable for resale and reuse when condition remains adequate. Constraints are mainly systemic: collection quality, sorting capacity, hygiene restrictions in some applications, and sufficient demand for secondhand products at scale.

Mechanical recycling remains the most established cotton recycling route, especially for clean, mono-material and pre-consumer waste. Its limitation is structural: fiber length and quality decline, constraining recycled content levels in higher-quality yarns and often requiring blending with virgin fibers. Post-consumer cotton also carries contamination and composition uncertainty, increasing sorting costs and reducing yields.

Chemical recycling and cellulose regeneration provide a complementary route, particularly where mechanical routes yield poor results. These pathways recover cellulose and regenerate it into new cellulosic fibers. They can deliver higher-value outputs than mechanical downcycling, but they are capital-intensive and depend on effective chemical management, feedstock preparation, and energy sourcing. Where energy is high-carbon or chemical control is weak, burdens can shift rather than decline.

Cotton end-of-life is also not limited to textile-to-textile loops. Cascading and alternative recovery routes can divert cotton waste from landfill and incineration where fiber-to-fiber scale-up is constrained. Examples include cellulosic feedstock for other regenerated fibers, paper and packaging applications that absorb large volumes, composites where cotton serves as a reinforcing filler, and conversion into higher-

value carbon materials. These pathways can represent meaningful diversion and value recovery, but credibility depends on transparent classification (closed-loop versus cascading use) rather than labeling all outcomes as recycling.

For cotton products containing problematic additives or treatments, end-of-life management becomes risk control as well as circularity. Some finishes can restrict safe reuse, recycling, composting, and even disposal options. This underscores a system truth: circularity performance is often decided upstream through chemistry and construction choices.

Finally, biological pathways, including controlled composting, remain appropriate for residual cotton streams that cannot be reused or materially recovered, provided materials are free from incompatible finishes, blends, and components. Emerging biological and enzymatic treatments may offer future options, but they remain developmental and system-dependent. In practice, outcomes depend on design discipline, identification of composition, sorting capability, and coordination across collection, recycling, and residual management.

Polyester and Synthetic Fibers: Technical Cycles and Structural Constraints

Polyester and other synthetic fibers occupy a structurally dominant position in the global textile system because they are cost-efficient, durable, and highly scalable industrially. Their circularity profile, however, is constrained by material origin and environmental behavior. Polyester is fossil-derived, non-biodegradable, and environmentally persistent. As a result, circular outcomes depend entirely on the performance of technical recovery systems. When those systems fail, polyester does not safely exit the economy. It accumulates as long-lived waste and fragments into persistent pollution.

Unlike biological fibers, polyester cannot return safely to natural systems. It must remain within controlled industrial loops to avoid environmental accumulation. In theory, polyester is recyclable. In practice, contamination, blending, polymer degradation, and infrastructure limitations constrain effective loop closure. Recovery failures therefore carry higher systemic risk than for biodegradable materials, because they produce enduring environmental persistence rather than a temporary loss of value.

Polyester's circularity constraints originate upstream. Production relies on fossil feedstocks and energy-intensive processing, embedding fossil carbon across the lifecycle. Common apparel design practices, including cotton-polyester blends, elastane incorporation, coatings, prints, and functional finishes, reduce feedstock quality, increase processing cost, and push recovered material toward downcycling or

disposal. Polyester circularity claims therefore often exceed what current systems can reliably deliver at scale.

A further structural constraint is that polyester's impacts are not confined to end-of-life. Synthetic textiles shed microfibers during manufacturing, wear, and laundering. These emissions occur throughout the use phase and are only partially captured by wastewater treatment systems. As regulatory focus expands from waste management to pollution prevention, microfiber release is emerging as a material-specific risk that cannot be addressed solely through recycling.

Polyester and Synthetic Fibers: Technical Cycles and Structural Constraints

At end of life, polyester textiles follow a hierarchy of recovery pathways, but the system struggles to retain material at high value. Reuse and life extension remain the most effective strategies because they preserve the full embedded value in the product and defer new production. In practice, reuse for polyester is often constrained by short design lifespans, declining garment quality, and logistical challenges in collection, grading, and redistribution.

When reuse is no longer possible, polyester enters recycling pathways with sharply different outcomes:

- Mechanical recycling is the most established and widely deployed route, particularly effective for high-purity, single-polymer streams such as PET bottles or controlled industrial scrap. In textile applications, where blends and chemical treatments are widespread, mechanical recycling frequently produces open-loop or downcycled outputs. Thermal and mechanical stress shortens polymer chains, reduces consistency, and often necessitates blending with virgin material to meet performance requirements.
- Chemical recycling aims to overcome these limitations by depolymerizing polyester into monomers or intermediates that can be purified and repolymerized into near-virgin material. This pathway is often presented as a solution for colored, contaminated, or blended textiles that are unsuitable for mechanical processing. Its effectiveness, however, is highly conditional. High energy demand, capital intensity, sensitivity to feedstock preparation, and dependence on low-carbon energy determine whether chemical recycling delivers net benefit or shifts burdens from waste management to energy and chemistry. In system terms, chemical recycling should be treated as a selective pathway for defined streams, not a universal solution.
- Biological or enzymatic degradation of conventional polyester remains largely experimental. Constraints related to reaction rates, polymer crystallinity, and scalability mean these approaches should be understood as longer-term research directions rather than near-term mechanisms for dominant synthetic fibers.

Where recycling pathways are unavailable or economically unviable, polyester is directed to incineration or landfill. Incineration reduces volume and may recover energy, but it permanently destroys material value and releases fossil carbon embedded in the polymer. Landfilling is the least favorable outcome: polyester degrades extremely slowly under anaerobic conditions, persists for decades or longer, and contributes to long-term pollution through gradual fragmentation and leaching of associated chemicals.

Across all end-of-life pathways, polyester circularity is constrained not by intent but by system performance. Without upstream design alignment, high-quality sorting, and scalable recovery infrastructure, polyester remains technically recyclable in principle but structurally difficult to cycle in practice. In many regions, the dominant outcome remains delayed disposal rather than durable material circulation.

In current policy and market debates, two transitional approaches are frequently promoted as responses to these constraints: recycled polyester derived from plastic bottles, and bio-based polyester produced with partial biological feedstocks. These are assessed separately below because they address specific pressures but do not resolve polyester's structural circularity limitations.

Recycled Polyester (rPET): Structural Limits of Bottle-to-Fiber Pathways

Recycled polyester occupies a central position in apparel sustainability narratives. Garments marketed as made from recycled bottles are frequently presented as evidence of circularity, reduced fossil dependence, and climate progress. While rPET can deliver incremental improvements relative to virgin polyester at the polymer production stage, the dominant bottle-to-fiber pathway does not satisfy the core requirements of a circular textile system. Its limitations are structural, not merely transitional, and arise from loop disruption, quality degradation, and weak end-of-life recovery in textiles.

Diverting Material from a Functioning Circular Loop

The vast majority of textile-grade rPET is derived from post-consumer PET bottles rather than from discarded textiles. This distinction is decisive. PET bottles already operate within one of the most efficient recycling loops globally, supported by comparatively high collection rates, mature sorting infrastructure, and repeated bottle-to-bottle recycling that preserves polymer quality and economic value.

Diverting bottles into textile fibers interrupts that functioning loop. Once PET is converted into fiber and embedded in garments, it enters a sector characterized by weaker collection, lower sorting precision, widespread blending, and limited recovery at end of life. From a circular economy perspective, this is loop disruption rather than

loop closure. Material is transferred from a relatively high-performing circular system into a lower-performing one where its probability of recovery declines sharply. In system terms, bottle-to-fiber reallocates scarcity rather than resolving it, and can increase reliance on virgin PET in packaging systems that must preserve performance and safety.

Open-Loop Downcycling

Bottle-to-fiber recycling often functions as an open-loop pathway. Mechanical recycling subjects PET to thermal and mechanical stress that shortens polymer chains, reduces molecular weight, and alters crystallinity. These changes may still allow fiber formation, but they reduce suitability for repeated high-value recycling.

Once converted into textile fiber, PET is rarely recycled back into textiles. After use, rPET garments face the same structural barriers as virgin polyester: blends, elastane content, dyes, finishes, and complex garment construction. At the system level, textile-to-textile recycling remains marginal. In practice, bottle-to-fiber frequently delays disposal but does not prevent it. Unlike bottle-to-bottle recycling, which can be repeated, bottle-to-fiber is often a one-way flow that ends in downcycling or disposal, representing a net loss of circular potential across the PET system.

Functional Constraints

Mechanical recycling introduces irreversible changes at molecular and microstructural levels. Recycled fibers can exhibit reduced tenacity, altered drawability, changed crystallinity, and greater stiffness relative to virgin polyester. As recycled content increases, fabrics may become less pliable and more rigid, imposing practical limits on comfort, performance, and application scope.

To meet quality requirements, rPET is frequently blended with virgin polyester. This may improve immediate performance but further complicates end-of-life recovery by increasing material heterogeneity. Recycled content does not constitute circularity if repeatable recovery is not technically or economically feasible.

Contamination further constrains quality. Residual adhesives, labels, non-PET plastics, catalyst residues, and processing byproducts can persist through recycling and accelerate degradation in later processing cycles. Advanced purification and polymer-repair techniques can partially restore performance, but they increase cost, complexity, and energy demand, reinforcing the conditional nature of rPET's benefits.

Microplastic Emissions

rPET does not resolve microfiber pollution because microfiber release occurs during manufacturing, wear, and laundering, long before end-of-life management. Evidence has reported higher shedding in recycled synthetics under laundering comparisons. Recycled polyester was reported to release about 55% more microfibers than virgin polyester, with average counts around 12,430 (recycled) versus 8,028 (virgin), and shorter average fiber length (about 0.42 mm versus 0.52 mm), increasing likelihood of inhalation and ingestion. Recycled polyamide was reported to shed over three times more than virgin, consistent with polymer weakening through reprocessing. Cotton sheds fibers too, but reported fibers were longer and heavier (around 0.66 mm) and, critically, cellulosic fibers biodegrade rather than persist as plastic pollution. The implication is direct: recycled-content claims can reduce virgin input in narrow accounting terms, but they do not automatically reduce microfiber pollution and may intensify it in some cases.

Carbon Accounting Distortions

Reported emissions reductions associated with rPET garments often focus on avoided virgin polyester production and omit broader system effects. When PET bottles are diverted into textiles, packaging systems may need to replace that material with virgin PET to meet performance and safety requirements. This substitution effect can offset a substantial portion of claimed savings.

As a result, rPET can shift carbon burdens across sectors rather than eliminating them. From a system perspective, the climate benefit depends not on product-level recycled-content claims, but on whether PET is kept in circulation at the highest feasible value for the longest possible time. Bottle-to-fiber often fails that test.

Transparency and Regulatory Risk

As disclosure standards tighten and circularity definitions become more precise, bottle-derived rPET is increasingly treated as a transitional practice rather than a circular solution. Frameworks focused on circularity, pollution prevention, and end-of-life responsibility are beginning to distinguish between loop-preserving and loop-breaking pathways.

Brands and policymakers that rely heavily on bottle-to-fiber narratives face rising scrutiny. Circularity claims that cannot demonstrate repeatable recovery, pollution reduction, and system-level benefit risk becoming misaligned with emerging regulatory expectations and investor due diligence.

Bottle-to-fiber rPET does not deliver circularity in textiles. It diverts material from a comparatively functioning closed loop, downcycles polymer value, does not resolve

microfiber pollution, and redistributes burdens rather than fixing structural recovery failure. rPET may offer incremental improvement relative to virgin polyester in narrow accounting terms, but its dominant pathway represents delay rather than durability, and reallocation rather than regeneration. Within a circular textile economy, bottle-derived rPET should be treated as a limited transitional input, not a structural solution.

Bio-Based Polyester: Input Substitution Without Circularity

Bio-based polyester is often presented as a renewable or climate-friendly alternative to conventional polyester. In practice, it may change feedstock origin without changing polyester's fundamental environmental behavior, recovery limitations, or end-of-life outcomes. From a circular economy perspective, most bio-based polyester remains a technical-cycle material with unresolved end-of-life impacts. It does not, by itself, deliver circularity.

A central source of confusion is definitional. Bio-based does not mean biodegradable, and “renewable content” does not mean safe exit from the economy. Many bio-based polyesters are designed as drop-in substitutes that are chemically identical to fossil-based polymers, specifically to run in existing petrochemical infrastructure. That compatibility is commercially useful, but it also means the polymer behaves like conventional polyester in use, disposal, and the environment.

Bio-Based Polyester is a Category, Not a Guarantee

“Bio-based polyester” spans very different materials:

- Drop-in bio-based polyesters chemically identical to fossil counterparts (for example, bio-PET, partially bio-based PET, and some bio-based PTT). These are primarily input substitutions.
- Novel bio-based polyesters with different monomers and properties (for example, furan-based polyesters such as PEF/PBF). These may be recyclable under certain conditions but introduce compatibility and sorting challenges.
- Bio-based and biodegradable polyesters (for example, PLA and some PHA families). These may biodegrade under controlled conditions, but biodegradability is conditional and often depends on industrial composting environments that do not exist at scale for textiles.

Because the category includes materials with different end-of-life behavior, the term is frequently used to imply circularity even when the polymer remains structurally non-circular in real systems.

The Drop-In Model: Renewable Input, Same Polyester Outcomes

The dominant bio-based polyester used in textiles is bio-PET, often marketed as “plant-based polyester.” Its defining feature is chemical identity with PET, and chemical identity determines environmental fate.

Most commercial bio-PET is partially bio-based, commonly achieved by replacing the monoethylene glycol (MEG) component with bio-derived inputs. Since MEG typically represents a minority share of polymer mass (often around 20 to 30 percent), the larger share remains anchored to petrochemical supply chains through terephthalic acid (PTA). More importantly for circularity, bio-PET remains non-biodegradable, environmentally persistent, and microfiber-generating because it is still PET. Changing feedstock origin does not change polymer persistence, shedding behavior, or end-of-life constraints in textile systems.

Circularity Requires Recovery, Not Renewable Content

Input substitution can reduce fossil resource dependence in principle, but circularity is not achieved at the beginning of the chain. Circularly is achieved when materials are kept in circulation through repeatable loops: reuse, repair, refurbishment, remanufacturing, and recycling that actually occurs at scale.

For polyester textiles, the limiting factor is not whether the carbon originally came from a plant or a refinery. The limiting factor is that recovery systems remain weak: collection is fragmented, sorting is imprecise, blends are dominant, and textile-to-textile recycling remains marginal. A polymer that cannot be recovered at end of life does not become circular because it had renewable content at birth. Bio-based polyester can become a narrative substitute for the system redesign required for real circularity.

Biodegradability Confusion: Bio-Based is Not a Safe Exit

A persistent misrepresentation in the polyester debate is the conflation of three concepts:

- Bio-based (where the carbon comes from)
- Biodegradable (whether microorganisms can break it down)
- Compostable (whether it breaks down under specified composting conditions without toxic residue)

Drop-in bio-PET is not biodegradable. Some bio-based polyesters (such as PLA and certain PHA families) may biodegrade, often only under specific industrial conditions, and often much more slowly outside controlled systems. In textiles, even biodegradable polymers can fail in practice if garments contain blends, dyes, finishes,

elastane, coatings, sewing threads, and accessories that prevent safe biological processing. Therefore, biodegradability is not meaningful in apparel unless product design and infrastructure are aligned to make that pathway real.

System Complexity and Recycling Risk

Bio-based polyester can also increase system fragility. Drop-in bio-PET does not improve textile recycling outcomes because it still faces the same constraints. Novel bio-based polyesters with different chemistries can create contamination risk if they enter PET recycling streams without accurate sorting and dedicated processing. In already fragile recycling systems, introducing additional polymer varieties without traceability and sorting capability can degrade polymer quality and economics, increasing leakage even if materials are marketed as green.

Agricultural and Land-Use Trade-Offs

Bio-based feedstocks carry external impacts, including land use, water demand, fertilizer inputs, biodiversity pressure, and potential indirect land-use change. First-generation feedstocks raise additional concerns related to food security and competition for land. These trade-offs do not automatically outweigh petrochemical impacts, but they complicate simplistic claims that plant-based polyester is inherently climate-positive.

From a circularity perspective, these trade-offs matter because they can shift attention away from circular system performance toward feedstock branding. A circular economy framework treats input substitution as secondary to durable value retention and credible end-of-life outcomes.

Bio-based polyester is frequently positioned as evidence that polyester has gone green. In reality, most commercial bio-based polyester in textiles is input substitution without circularity. Drop-in bio-PET changes some upstream inputs but does not change the core circularity barriers: persistence, microfiber emissions, weak recovery, and end-of-life leakage. Novel bio-based polyesters may offer future potential, but they also introduce sorting and compatibility risks unless systems are redesigned to manage them. A circular textile economy is defined by what happens repeatedly after first use: how long products stay in service, whether they are collected, whether they can be sorted, and whether they can be recovered into high-value loops. Bio-based content does not solve those requirements. It can reduce fossil dependence in narrow accounting terms, but it does not deliver circularity unless paired with real recovery systems and upstream design rules that prevent leakage.

Chapter 4

WHY CIRCULARITY FAILS AT SCALE: BLENDS, RECYCLING LIMITS, AND THE DESIGN BOTTLENECK

Circularity in textiles has not stalled because intent is absent or technology is stagnant. It has stalled because the market's dominant product architecture was optimized for performance, speed, and low cost, while recoverability remained a secondary constraint. The result is a structural mismatch between what is produced at scale and what recovery systems can process at scale.

Three barriers consistently prevent circularity from scaling under real-world conditions:

1. Blended and multi-material garments that convert recoverable materials into composite feedstocks that are costly to separate and difficult to stabilize.
2. The technical, energy, and economic limits of textile-to-textile recycling, especially under heterogeneous post-consumer feedstock conditions.
3. Design decisions that predetermine recoverability long before collection, sorting, and recycling become relevant.

Blended Textiles as a Structural Barrier

Blends have become standard in modern apparel because they deliver predictable performance at low cost. Cotton–polyester blends, elastane-containing fabrics, coated materials, and multi-component constructions dominate denim, athleisure, underwear, and everyday basics. The circularity challenge is not that blends exist; it is that blending fuses materials governed by different recovery requirements into a single inseparable feedstock.

Circular systems depend on converting end-of-use textiles into identifiable, consistent, processable inputs. Blends violate all three of those conditions. Once fibers are intimately mixed at yarn or fabric level, recovery becomes a separation and purification problem, where cost, energy demand, chemical management, and yield loss can exceed the economic value of post-consumer material. This is why blends sit at the center of circularity failure at scale.

Why Mechanical Recycling Performs Poorly on Blends

Mechanical recycling performs best on mono-material, predictable, low-contamination inputs. Blends rarely meet that standard. Shredding does not separate fiber types; it produces a mixed fiber mass in which cellulosic fibers shorten,

synthetics lose quality, and spinnability declines. Non-fiber elements and processing residues dyes, finishes, prints, sewing threads, labels, coatings remain in the stream and accumulate as contamination across attempts to recycle. The result is lower yields and a drift toward downcycling rather than fiber-to-fiber recovery.

Mechanical recycling is often described as lower in intensity because it relies on physical operations. That advantage holds only when feedstock quality is controlled. As heterogeneity rises, the system burden shifts upstream into repeated handling, tighter sorting, and higher rejection. The limiting factor is not the shredding equipment; it is the inability to stabilize the input stream.

Elastane as a High-Impact Contaminant

Elastane creates outsized disruption at low percentages. In mechanical systems, elastic filaments wrap, tangle, and fragment, interfering with fiber opening and reducing output consistency. In chemical systems, elastane introduces additional chemistries that complicate separation and purification. Disruption is amplified when elastane is embedded in core-spun yarns or cannot be detected reliably.

This is why garments that appear nearly recyclable frequently behave as non-recyclable feedstock in industrial conditions. A small elastane fraction can determine the fate of the entire batch.

Sorting as the First Bottleneck

Textile-to-textile recycling rises or falls on sorting. Blends multiply material categories, reduce lot uniformity, and raise contamination risk. Multi-layer garments, coated fabrics, hidden elastane, mixed trims, and mixed linings further reduce identification accuracy and increase sorting costs. Recyclers respond by tightening acceptance criteria to protect downstream quality, increasing rejection rates and pushing more material to disposal.

Sorting also determines process intensity. When consistent streams cannot be produced, the system shifts away from physical processing toward separation pathways that are more energy- and chemical-dependent.

Separation Technologies: Possible, but Constrained by System Conditions

Separation of blends is technically possible through selective dissolution, depolymerization, enzymatic approaches, and hybrid processes. The constraint is scale under real conditions: variable dyes and finishes, inconsistent composition, contamination, and unstable supply.

Separation is not one step; it is an industrial sequence pre-treatment, separation, washing, purification, and recovery of chemicals and heat. Each stage adds cost, yield loss, and operational complexity. Without stable feedstock supply, high utilization, and policies that internalize system costs, separation technologies remain selective solutions rather than mass-market recovery pathways.

Textile-to-Textile Recycling: Technical Feasibility vs System Reality

Textile-to-textile recycling is often framed as the missing loop. Technically, many fibers can be recovered into textile-grade feedstocks under controlled conditions. Systemically, scaling is constrained because post-consumer streams are heterogeneous by design, preparation is expensive, and recycled outputs must compete with low-cost virgin materials produced in optimized global supply chains.

Two routes dominate: physical recovery at the fiber level and chemical recovery that rebuilds feedstocks from purified building blocks. Both require disciplined inputs. Most post-consumer streams are undisciplined at source.

Cotton: Multiple Routes, One Binding Constraint

Cotton has multiple recovery routes, including physical recovery and cellulose regeneration. The binding constraint is not chemistry; it is feedstock discipline. Post-consumer cotton often carries finishes, dyes, blends, and legacy chemicals that increase process requirements and narrow safe pathways.

Cotton also illustrates a practical trade-off: physical recovery is simpler but constrained by quality loss and contamination; regeneration can restore higher-quality outputs but increases energy, chemical management, and wastewater control requirements. Circular potential exists, but it is unlocked only when collection, sorting, and product architecture produce predictable inputs.

Polyester: Closed-Loop Potential, Fragile Execution

Polyester can be rebuilt to near-virgin quality through chemical routes under tight control, creating a credible technical basis for repeatable circularity. The execution is fragile. Outcomes depend on contamination control, stable feedstock composition, high utilization, and disciplined recovery of catalysts, solvents, and process heat. Polyester recycling is feasible in defined conditions, but it is industrial processing with real energy and purification burdens. Climate performance depends on energy mix and process integration, and improved end-of-life outcomes do not eliminate use-phase exposure pathways.

Blends: Where Recycling Becomes a Process-Industry Problem

Blends represent the point at which recycling shifts from material recovery into process-industry intensity. Separating mixed fibers at scale requires elevated process complexity, stronger purification, and tighter control than mono-material streams. Mechanical pathways offer limited relief because they cannot restore separability and often degrade value. Chemical and hybrid routes can, in principle, deliver separation and higher-quality outputs, but they are highly sensitive to dyes, finishes, embedded elastane, and contamination.

This is the structural mismatch: the mass market produces the highest volume in the most complex forms, precisely where recovery requires the highest process intensity.

Economics as the Binding Constraint

Even when recycling works technically, it often fails economically. Recycling competes with a mature virgin production system optimized for scale, logistics, and price. Major costs arise upstream: collection, sorting, disassembly of non-textile components, aggregation into consistent lots, transport, compliance, and quality assurance.

Energy and chemicals appear as system costs, not only process variables. Scaling requires continuous operation, stable input quality, and reliable offtake. When feedstock quality fluctuates, costs rise quickly through lower yields, reprocessing, and increased purification. Until these cost drivers are addressed through market design and policy instruments, recycling will remain constrained in market penetration even as technologies improve.

Design as the Determinant of Circular Outcomes

Circularity outcomes are largely decided before a garment is manufactured. Product architecture determines whether items can be reused, repaired, disassembled, sorted, and processed at acceptable cost and risk. End-of-life results are therefore downstream reflections of upstream decisions.

Material Purity and Whole-Garment Design

Material purity is a decisive enabling condition because it simplifies sorting and protects downstream quality. Purity applies to the whole product, not only the main fabric. Threads, labels, interlinings, coatings, fasteners, trims, and adhesives can compromise otherwise recoverable designs. Circular design requires treating the garment as an integrated material system, where each component is chosen with end-of-use processing in mind.

Durability and Recovery Compatibility

Durability can reduce premature disposal, but it does not automatically align with recoverability. Some performance-driven design choices extend wear life while increasing complexity or contamination risk and blocking recovery. Circular design therefore requires linking durability decisions to credible downstream pathways rather than treating longevity as inherently circular.

Repairability and Disassembly

Repairability sustains use and reduces premature waste. Design for disassembly improves separation efficiency, lowers contamination, and raises recovery yields. Conversely, permanent bonding, inseparable composites, and complex assemblies raise recovery costs and can render recycling uneconomic even where it is technically possible.

Managing Trade-Offs Under Real Infrastructure Conditions

Circular design involves trade-offs, and infrastructure differs across markets. Mono-material choices can limit certain performance features; multi-material constructions can improve performance but block recovery. The correct design choice depends on intended use, expected lifespan, and the recovery systems that actually exist. Failure occurs when products are designed for theoretical recyclability while ignoring sorting constraints, separation intensity, and economics.

Circularity fails at scale because the system is designed to defeat it: product complexity produces composite feedstocks, recycling is constrained by real-world stream quality and economics, and design choices routinely eliminate recovery options long before products reach the market. Scaling circularity therefore requires upstream design discipline, investable sorting and recovery capability, and incentives that reward value retention rather than volume turnover.

Chapter 5

USE-PHASE CIRCULARITY AND THE ECONOMICS OF CIRCULAR TEXTILES

The highest-value circular outcomes in textiles occur during the use phase, before a garment becomes waste. Recycling remains necessary for residual streams, but circular performance is determined primarily by whether products stay in service through resale, reuse, repair, rental, and remanufacturing. These strategies preserve value at the product level, where labor, energy, and materials remain embodied in a functioning item rather than being converted into lower-grade feedstock.

Scaling use-phase circularity is therefore less a question of technical feasibility than of economics. Circular economy reshapes how value is created, how costs are distributed, and how investment decisions are made across the value chain. Progress depends on aligned incentives, enabling infrastructure for reverse flows, and commercially credible models that can operate at scale rather than as premium niches.

Circular Business Models and Product Use

Use-phase circularity is the system's inner loop: it keeps products functioning as products. Each additional period of use can displace replacement demand, reduce material throughput, and delay entry into waste streams. The economic implication is decisive: use-phase strategies often generate the highest return on circular effort because they preserve the original manufacturing value instead of attempting to recover a fraction of it later.

Use-phase circularity also makes consumer behavior operationally relevant. How garments are worn, maintained, and returned affects not only environmental performance but also resale value, refurbishment cost, and the operating economics of reverse logistics. Care practices, washing frequency, and laundering conditions can materially affect product longevity and circular service costs.

Extending Product Life as the Core Strategy

Extending product life is the core strategy because it prevents value destruction while value is still highest. Instead of converting textiles into fibers or polymers, use-phase circularity prioritizes care, repair, reuse, and redistribution.

In practice, longer life requires three conditions: products designed to last and be maintained; channels that can recirculate items efficiently; and incentives that reward longevity rather than rapid turnover. When any one condition is missing, garments exit use prematurely even when recycling options exist.

Resale and Reuse

Resale and reuse transfer garments from one user to another with minimal physical intervention. Brand-managed resale platforms, peer-to-peer marketplaces, and secondhand retail have expanded across regions and categories. The central benefit is production avoidance: when a reused garment displaces a new purchase, the manufacturing footprint is avoided.

Resale also supports employment and enterprise across sorting, grading, authentication, light repair, logistics, and retail. Performance is strongest where garments retain comfort, appearance, and durability and are not bound exclusively to short-lived trends. However, outcomes depend on real displacement and responsible end markets. If resale accelerates overall consumption or if receiving markets cannot absorb inflows, burdens can shift rather than decline. Mature resale systems therefore require quality control, transparent reporting, and clear pathways for items that cannot be resold.

Repair, Refurbishment, and Remanufacturing

Repair extends product life while retaining nearly all embedded value. Refurbishment and remanufacturing deepen this logic through structured interventions that restore garments closer to original performance, including reinforcement, component replacement, and functional upgrades. Compared with recycling, these strategies retain product complexity and value rather than reducing it to lower-grade material.

Effective repair and refurbishment ecosystems depend on maintainable product architecture (accessible seams, reinforced stress points, standardized components, replaceable parts) and enabling infrastructure (repair services, parts availability, skills, quality assurance, and consumer incentives). Despite clear advantages, these models remain under-scaled in many markets due to declining repair capacity, weak incentives, limited consumer awareness, and product design optimized for low upfront cost rather than maintainability. They are particularly well suited to uniforms, workwear, and standardized product systems where repeatability and quality control are feasible.

Rental and Product-as-a-Service Models

Rental and leasing models increase utilization by enabling multiple users to share the same product over time, shifting value creation from unit sales to service delivery. These models can be effective for occasion wear, uniforms, workwear, and high-value garments with long technical lifespans. By increasing uses per garment, rental

systems can reduce production volumes while creating recurring revenue and longer-term customer relationships.

Performance depends on durability, cleanability, reverse logistics, and operational efficiency. If transport, handling, and laundering are not optimized, rental can shift impacts from manufacturing to logistics and care rather than reducing net burdens. The strongest cases are those with high utilization, long product life, and efficient logistics and cleaning systems.

Why Use-Phase Circularity Outperforms Recycling

Recycling remains necessary for residual streams, but it is structurally constrained and often value-destructive: it consumes energy, typically involves quality loss, and frequently results in downcycling. Use-phase strategies avoid these losses by preserving function, which is the highest form of value retention in a circular system. For circular strategy, the implication is clear: recycling should be treated as a backstop, not the primary engine of circularity.

The Economics of Circular Textiles

Circularity represents a structural economic transition. Linear systems reward speed, volume, and low unit cost. Circular systems generate value through durability, service models, reverse logistics, recoverable materials, and data-enabled coordination. This shift creates new profit pools, but it also exposes misalignments that prevent scale even when consumer interest and technology are present.

How Circularity Reshapes Cost Structures

Circularity reallocates costs that were historically externalized. Upstream, design and material specifications tighten to support durability, maintainability, and credible recovery, raising costs through stricter inputs, process control, and compliance. In the use phase, circularity adds operating costs related to inspection, grading, cleaning, logistics, quality assurance, repair labor, and platform operations. At end of life, obligations increasingly shift toward producers through take-back requirements, sorting fees, reporting, and compliance.

This is not a marginal adjustment. It is a structural reallocation of who pays for system outcomes and when those costs occur.

Where Economic Value Is Created

The greatest value retention occurs through extended product use. Reuse, repair, rental, refurbishment, and remanufacturing preserve embedded labor, energy, and materials while converting garments into multi-cycle assets. Circularity also creates

economic activity around reverse flows: collection, sorting, authentication, resale logistics, repair networks, and controlled recovery where residual streams remain unavoidable.

In many contexts, linear disposal produces direct economic leakage: value is lost after one use cycle while municipalities and ecosystems absorb the cost. Circularity therefore offers not only environmental performance, but also economic recovery of value currently destroyed.

Data systems are important economic enablers because they reduce uncertainty. Reliable product identity, composition information, and durability attributes improve pricing, inventory management, and quality assurance in resale and rental and reduce risk for investment in reverse logistics and recovery. Without credible and interoperable information, circular claims can outrun circular performance, undermining trust and investment.

Distribution of Costs and Benefits

Circularity economics are uneven. Brands and retailers often capture early benefits because they control consumer interfaces and monetization channels (resale margins, service revenue, loyalty gains, compliance positioning). Manufacturers and upstream suppliers often bear transition costs (tighter specifications, chemical restrictions, information requirements, process upgrades) without guaranteed premiums. Sorters and recyclers carry capital risk due to inconsistent feedstock, uncertain volumes, and fragile end markets. Consumers may benefit from durability and resale value, but higher upfront prices and inconvenience can slow adoption.

These misalignments are a key reason circularity struggles to scale: costs are concentrated while system-wide benefits accrue later and are often captured elsewhere.

From Isolated Initiatives to Circular Infrastructure

Circular scale requires shared enabling infrastructure, not isolated pilots. Core needs include effective collection and take-back systems, fiber identification and sorting capacity, repair and refurbishment ecosystems, appropriate recycling for unavoidable residues, and shared standards that reduce transaction costs. These are network-level investments that require coordination and, in many contexts, policy support. Without them, circular models remain confined to premium niches rather than becoming a mainstream operating system.

Conditions for Economically Durable Circularity

Circular textiles become economically durable when three conditions align: products are designed for reuse, repair, and credible recovery; infrastructure exists at scale; and incentives reward circular behavior while penalizing non-circular design. Circularity becomes mainstream not when recycling improves in isolation, but when circular choices become the rational economic default across the system, supported by credible information, stable end markets, and predictable rules that reduce uncertainty for investment.

Chapter 6

GOVERNANCE, DATA, AND MARKET POWER: MAKING CIRCULARITY ENFORCEABLE

Circularity does not scale through technology or goodwill alone. It scales when rules are enforceable, information is reliable, and incentives reward verified outcomes rather than narrative claims. In textiles, enforceable circularity rests on three levers: digital infrastructure that makes products legible across lifecycles, policy instruments that price end-of-life burdens and reward recoverable design, and market power capable of standardizing requirements at scale.

Digital Infrastructure for Circularity: Traceability, Product Passports, and Data Systems

Circularity cannot function at scale without shared, reliable information. Traceability systems, Digital Product Passports (DPPs), and interoperable data platforms provide the operational backbone of a circular textile economy by enabling identification and sorting, supporting repair and resale, reducing fraud and greenwashing, and lowering risk for investment in circular infrastructure.

A DPP is a structured, machine-readable product record designed for use across the value chain. For textiles, it typically includes fiber composition, material origin, relevant chemical and finishing disclosures, durability and repair guidance, and recommended end-of-use routes. Its practical value is operational: it improves automated sorting and fiber identification, supports repair and refurbishment through component and care guidance, strengthens resale authentication and valuation, and makes claims comparable and verifiable for compliance.

Traceability extends this function by assigning products a persistent digital identity that remains useful beyond the first sale. Circular traceability is designed for multiple lifecycles: take-back systems, reverse logistics, sorting by fiber and condition, and contamination control in recovery streams. Tools such as QR codes, RFID, NFC, and embedded identifiers can carry identity, while backend systems manage verification, permissions, and updates as products are repaired, resold, refurbished, or collected.

Product-level records alone are not sufficient. Circularity requires system-level data infrastructure that connects products to logistics providers, sorting facilities, resale platforms, recyclers, and regulators. Interoperable data exchange reduces transaction costs, improves matching between streams and recovery pathways, and makes investment in sorting, reuse, and recovery more financeable because uncertainty is reduced and offtake becomes more predictable.

Disclosure requirements also function as a design filter. As information standards tighten, products that are simpler in composition, safer in chemistry, easier to identify, and compatible with realistic recovery pathways become less costly to process and less risky to handle. Complex blends, opaque additives, and poorly disclosed finishes raise sorting costs, increase rejection rates, and undermine high-quality recovery. Over time, data compatibility becomes a competitiveness factor alongside price and performance.

Digital systems, however, are not substitutes for physical circularity. Key risks include intellectual property and governance concerns, disproportionate compliance burdens for small and medium enterprises, weak cross-border interoperability, and the failure mode of documentation compliance without measurable outcomes. Data must enable operational decisions, verification, and consequences for non-compliance. Without auditability, DPPs and traceability can become a reporting layer over a still-linear system.

Policy Transformation and Extended Producer Responsibility

For decades, textile waste and pollution costs were largely externalized to municipalities, taxpayers, and ecosystems. That model is being challenged through Extended Producer Responsibility (EPR), eco-modulation, and mandatory sustainability regulation. The structural shift is clear: responsibility moves toward producers and, critically, toward the actors who determine design, sourcing, and market placement.

EPR assigns producers responsibility for post-consumer collection, sorting, reuse, recycling, and disposal. When designed well, EPR turns disposability into a priced outcome by making low durability and poor recoverability financially visible. It reframes waste from a downstream consumer problem into an upstream design and market problem.

Eco-modulation strengthens EPR by differentiating fees based on verifiable product attributes. Durable, repairable, simpler designs that are compatible with realistic recovery can face lower fees, while designs that obstruct sorting and recovery face higher ones. Properly calibrated, eco-modulation translates circular design principles into price signals that influence blending decisions, elastane use, trims, finishes, and whole-garment architecture and reduces the space for vague sustainability claims.

EPR effectiveness is not automatic. It can underperform if fees are too low to change design, if costs are simply passed through without architectural change, if criteria are poorly calibrated or easily gamed, or if enforcement is weak, especially for cross-border and online sales. EPR also depends on DPP and traceability systems so attributes and claims are verifiable, comparable, and actionable at scale.

Brands and Retailers: Market Power and Circular Outcomes

Brands and retailers sit at the leverage point of the textile system. They control demand signals, product specifications, and commercial terms that determine which materials and architectures dominate markets. When signals are clear and consistent, suppliers invest and capacity follows. When signals are mixed, innovation stalls and circularity remains confined to pilots.

- Many brands emphasize recycled content and preferred materials as visible actions. These can deliver incremental gains, but structural constraints remain:
- Feedstocks are limited in scale and consistency,
- Quality can degrade across cycles, and
- Mainstream product architecture often continues to rely on blends and performance finishes that obstruct sorting, reuse, and recovery.

This creates a credibility gap between circular commitments and product reality.

As regulation tightens, sustainability communication shifts from persuasion to proof. Claims must become comparable, auditable, and outcome-based. Weaknesses that were previously tolerated partial disclosure of blends and chemical inputs, narrow focus on single attributes, and limited evidence of durability and repair performance become regulatory and reputational liabilities in systems supported by DPPs and enforceable reporting.

Market power can reinforce linearity through price pressure that discourages supplier investment and short cycles that reward low durability. The same power can accelerate transformation by standardizing design requirements where feasible, requiring verified disclosure, co-investing in take-back and sorting, and de-risking circular infrastructure through long-term commitments and predictable offtake.

Circular textiles become enforceable when governance, data, and market power align. DPPs and traceability provide the information backbone. EPR and eco-modulation reallocate responsibility and price non-circular design. Brands and retailers determine whether circularity becomes the default operating logic through specifications, investment commitments, and verifiable performance.

Chapter 7

SOCIAL EQUITY, NATIONAL SYSTEMS, AND FINANCING FOR CIRCULAR SCALE

Circularity in textiles is not only a material transition. It is a redistribution of value, risk, and bargaining power across countries, workers, and firms. System design choices determine where jobs concentrate, who captures emerging profit pools, and which regions absorb adjustment costs. Without deliberate governance, circularity can concentrate new economic activity in high-income consumer markets while shifting compliance burdens, volatility, and waste-management pressure toward producing economies. A development-aligned transition therefore requires three conditions at once: equity objectives embedded in circular design, national capacity to manage textiles as governed material flows, and financing architectures capable of funding infrastructure and livelihoods under long tenors and early-stage uncertainty. For cotton-producing and cotton-rich economies, the stakes are especially high because circularity intersects directly with rural livelihoods, industrial upgrading, export earnings, and employment-intensive manufacturing.

Employment, Livelihoods, and Social Equity in Circular Textiles

Circularity reshapes employment across the value chain. It can create roles in collection, sorting, grading, repair, resale, refurbishment, remanufacturing, and controlled recycling. It can also destabilize upstream employment if reduced virgin throughput is not matched by investment in upgrading, domestic value addition, and higher-value circular manufacturing. In practice, circular job growth is often geographically uneven: downstream activities expand where take-back systems, resale platforms, and circular infrastructure are located, frequently in consumer markets, while suppliers in exporting economies face tighter standards, cost shifting, and demand uncertainty.

Equity is not guaranteed by job creation alone. Circular systems can reproduce precarious work if they rely on low-paid sorting labor, unsafe handling of textile waste, or informal repair and resale without protections. A transition that increases reuse volumes while worsening safety, income stability, or informality fails the test of a just transition. Social equity therefore needs to be explicit in circular policy and investment: safe working conditions, fair pay across formal and informal segments, occupational protections in sorting and processing, and mechanisms to prevent circular value capture from concentrating only where consumption occurs.

For cotton-producing economies, equity stakes extend beyond factory floors. Cotton supports millions of smallholders and underpins employment across ginning, spinning, and manufacturing. Circular economy can create opportunity when it strengthens

demand for verified cotton, links sustainability requirements to credible incentives, and supports productivity and climate resilience. Risks arise when circularity is framed narrowly as less virgin fiber. In that framing, farmers and upstream suppliers can absorb costs through price pressure, reduced offtake, and increased volatility. If compliance tightens without compensation, smallholders can be excluded; if purchasing practices remain aggressive, transition costs can be transmitted upstream through tighter conditions and thinner margins. A development-aligned transition must avoid a model in which producing regions absorb risk while consumer markets capture resale and recovery value.

Gender equity is central. Textiles is among the most gendered global industries, with women concentrated in lower-paid and lower-security roles across agriculture, factories, informal trade, and services. Circular business models can create positive pathways through repair, refurbishment, resale, and localized circular services that support entrepreneurship, skills development, and income diversification. But high-risk pathways also exist: if circular jobs remain informal and low-paid, women can become overrepresented in precarious work; if formal systems require digital access, certification, and compliance that women cannot easily reach, exclusion can deepen. A credible transition therefore requires gender-responsive policy and finance: equal pay for equal work, workplace protections, progression pathways, and targeted support to women-led enterprises in repair, reuse, and localized circular services.

Circularity also shifts bargaining power. In linear systems, advantage concentrates around scale and unit cost. In circular systems, advantage increasingly lies in control of reverse logistics, sorting and grading capacity, access to high-quality feedstocks, and ownership of data systems. Without safeguards, a new concentration risk emerges in which a small number of actors control circular infrastructure and information while upstream producers remain price takers. A just transition therefore requires intentional policy and investment: upgrading programs for suppliers and farmers, formalization and protection pathways for sorting and reuse workers, and fair value distribution so circular profit pools do not expand while farm and supplier margins collapse. Representation mechanisms for social actors in circular governance can strengthen legitimacy and keep social outcomes on the agenda alongside environmental targets.

National Collection Systems and Circular Capacity

Circular scale is built through national systems capacity, not recycling ambition. The decisive question for any country is what it can collect, sort, verify, and process; what it can keep in circulation through reuse and repair; and what it can safely regenerate into new materials while managing residual streams. Fragmented pilots do not create

circular scale. Scale requires treating textiles as a governed material stream with standards, evidence, and coordinated actors.

Collection is the first gatekeeper

If textiles are not captured in sufficient volume and quality, downstream steps become uneconomic or impossible. Separate collection matters more than raw tonnage: mixed municipal waste contaminates textiles, sharply reducing reuse value and recoverability and often turning “collection” into a pathway to disposal or export. Controlled drop-off systems and structured door-to-door approaches can improve feedstock quality but require investment, service design, and accountability. Informal reuse systems can be valuable assets in many developing economies, but without structured interfaces they rarely generate consistent streams for industrial processing. Collection should therefore be treated as a regulated service with minimum quality thresholds, not a voluntary activity measured only by weight.

Sorting is the capacity bottleneck and the “investability” bottleneck

Without sorting, countries cannot generate consistent, financeable streams. Reuse requires grading by condition and category. Recycling requires classification by fiber type, color, contamination, and disruptors such as elastane, coatings, and composites. Advanced sorting technologies can improve throughput and precision, but governance determines whether they scale: standards, verifiable composition information, and coordinated investment that prevents fragmentation into incompatible systems.

Recycling Capacity

Recycling capacity must be assessed as part of an integrated national material strategy. Mechanical routes may be cheaper but often degrade quality and default to downcycling. Chemical routes can deliver higher-value outputs but require stable feedstock, energy, chemical management, and capital. The strategic question is not whether recycling exists, but whether outputs can be absorbed at scale by domestic or export markets. Where domestic end markets exist, circularity becomes more resilient; where they do not, recycling becomes export-dependent and structurally fragile. This is why national strategies increasingly emphasize cluster development, regional supply chain approaches, and coordinated commitments among brands, municipalities, sorters, and processors to stabilize volumes and offtake.

Residual Management

Residual management and trade governance are non-negotiable. Every system produces residue: contaminated textiles, composites, and items with unsafe chemistries. Without controlled residual management, these streams leak into dumping, open burning, or unmanaged landfills, undermining environmental integrity and social legitimacy. Global trade in used textiles can support affordability and reuse, but low-quality inflows often become waste quickly, imposing disposal costs on receiving countries. Without safeguards, trade can externalize waste burdens under the guise of reuse. Quality thresholds, transparency, traceability, and enforcement are essential to prevent disguised dumping and protect national circular capacity.

For cotton-rich economies, deliberate national systems create a distinct opportunity. Cotton and other cellulosics can feed higher-value pathways when sufficiently pure: reuse, mechanical recovery into blends, regeneration into cellulosics, and conversion into industrial inputs. Biodegradability reduces persistence risk, but value creation depends on capture, sorting, and processing capacity. A credible national strategy can be organized around five coordinated pillars:

1. Collection standards and incentives
2. Sorting and pre-processing capacity
3. Domestic end markets for recycled or regenerated outputs
4. Residual management systems; and
5. Trade governance that prevents waste dumping and supports industrial upgrading

Financing Circular Textiles at Scale

Circular textiles are constrained less by ambition than by bankability. Collection networks, sorting hubs, recycling plants, regenerative production systems, and data platforms are capital-intensive, long-tenor investments with fragmented revenue streams and elevated early-stage risk. Many deliver public benefits that are not immediately monetizable. Financing must therefore be structured as system finance, combining public, development, climate, and private capital in ways that reduce risk and create durable cash flows.

Public finance is foundational because many circular assets function as quasi-public infrastructure. Governments shape capital flows through direct investment in collection and sorting, residual management, shared data platforms, fiscal incentives, and regulatory certainty. In cotton systems, public support is also critical for climate-smart and regenerative practices whose benefits accrue over time.

Development finance institutions can translate public objectives into bankable pipelines through long-tenor instruments, concessional finance, guarantees, and

technical assistance. In cotton-based economies, they can finance sorting and processing linked to domestic textile upgrading, traceability systems, cluster infrastructure, and value-chain finance that reaches smallholders. Blended finance structures, including first-loss capital and guarantees, are particularly important for early-stage investments where feedstock quality, prices, and demand are uncertain.

Climate finance becomes relevant when circular textiles are designed as integrated mitigation and resilience programs, supporting low-carbon processing, renewable energy integration, regenerative cotton systems, and reuse and recovery pathways that reduce virgin demand. Because climate finance typically requires measurable outcomes, circular programs must incorporate credible baselines, monitoring, and verification across collection, reuse, and processing.

Private capital becomes decisive when supply is reliable, regulation is stable, revenue streams are predictable, and offtake is bankable. In practice, private investment often flows first to asset-light recommerce and data solutions and selectively to processing technologies with assured demand. Upstream infrastructure and smallholder-linked transitions remain underfinanced without co-investment, anchor offtake agreements, and predictable demand signals created through producer-responsibility mechanisms.

Scaling therefore depends on structuring durable cash flows, not only mobilizing more capital. Bankability improves through long-term offtake contracts for recycled and regenerated fibers; buyer-backed finance; supplier credit linked to verified outcomes; and service-based financing that treats sorting and collection as paid infrastructure. Over time, financing becomes easier when national systems reduce uncertainty through transparent data and coordinated commitments that stabilize volumes, quality, and prices.

Circular textiles will scale only if social equity, national systems, and financing are addressed together. A credible transition requires explicit social safeguards, national systems that produce consistent and safe material flows, and financing structures that reduce risk while rewarding verifiable outcomes. Where those conditions align, circularity can support employment, resilience, and value retention in producing countries rather than shifting burdens onto them.

Chapter 8

MEASUREMENT, RISK, AND THE LIMITS OF CIRCULAR OPTIMISM

Circularity in textiles increasingly depends not on ambition, but on measurement. Metrics now shape regulation, investment, procurement, and public credibility. What is measured becomes what is rewarded, and what is rewarded becomes what scales. Yet many dominant tools were not built to evaluate circular textile systems as they actually operate across multiple lifecycles, mixed-material realities, uneven infrastructure, and unequal global value chains. The result is a persistent risk of confident numbers that simplify complexity, over-credit circular activity, understate failure risk, and misdirect capital toward what is most countable rather than most consequential.

This section examines what current tools systematically miss, why those gaps matter, and how mismeasurement can distort outcomes at scale. It then outlines predictable risks and unintended consequences when circularity is pursued through incomplete indicators and weak safeguards.

Measuring Circularity: What Current Tools Miss

Three structural weaknesses explain why dominant circularity and sustainability assessment tools often misrepresent textile systems in practice. First, they rely on single-life modeling that struggles to represent multiple use cycles, durability, and real circulation. Second, they prioritize mass flows and material inputs over functional value retention and quality. Third, they assume technical feasibility translates into operational reality, even where infrastructure, economics, and governance do not support recovery at scale. The following sections examine how these weaknesses appear across major measurement frameworks used in textiles. As circularity shifts from concept to regulation and market access, measurement becomes an instrument of governance. In textiles, where outcomes depend on multiple use cycles, quality retention, sorting precision, and system capacity, these biases can produce rankings and scores that look authoritative while masking weak circular performance.

Circularity Is Not Sustainability

Circularity describes how materials circulate through systems. Sustainability asks whether those systems reduce harm and instability across environmental, social, and economic dimensions. Treating the two as interchangeable is a foundational error.

A system can appear more circular while remaining environmentally damaging, for example when recycling relies on carbon-intensive energy, harsh chemistry, or poorly controlled emissions. Conversely, systems centered on durability and longer use can

deliver strong sustainability outcomes even when end-of-life recovery remains limited. When circularity and sustainability are collapsed into a single score, three distortions recur:

1. Recycling is over-credited regardless of quality loss or process intensity
2. Functional value retention is undercounted; and
3. Fundamentally different material systems are treated as comparable simply because both can be recycled in theory.

The consequence is optimization for what is easiest to count rather than what improves system performance.

Life Cycle Assessment: Indispensable, Yet Structurally Linear

Life Cycle Assessment remains essential for identifying hotspots and comparing products across impact categories. However, most LCA practice remains structurally linear, built around single-life cradle-to-grave assumptions. In circular systems, that structure becomes a constraint. Allocation rules between virgin and recycled content, boundary choices, and end-of-life assumptions can dominate results, and small methodological changes can reverse rankings. In most of the systems carbon sequestration, microfiber, renewability and biodegradability have not been accounted for.

Multiple lifecycles, reuse displacement, durability, and repeated circulation are difficult to represent with confidence, while modeled recycling credits can outweigh real-world feasibility. The result is a persistent end-of-life bias: the model can reward assumed recovery more than demonstrated system performance. LCA is therefore necessary, but insufficient as a stand-alone guide for circular design, policy, or investment in textiles.

Material Circularity Indicator: Tracking Flows, Not Outcomes

The Material Circularity Indicator offers a simple signal of movement away from linear flows. Its limitation in textiles is that it privileges mass flows over quality retention, often treats downcycling and closed-loop recovery similarly, and excludes energy, emissions, toxicity, and social effects. In a sector where quality determines whether reuse or fiber-to-fiber recovery is viable, this can mislead. MCI can support early-stage design thinking and internal benchmarking, but it cannot substantiate sustainability claims or guide high-stakes decisions on its own.

Product Environmental Footprint: Regulatory Power, Structural Risk

Product Environmental Footprint is increasingly influential because it is designed for harmonization and regulatory application. As it becomes embedded in compliance, procurement, and trade-related comparisons, the consequences of its assumptions are magnified.

The central risk is premature score boarding: complex circular dynamics are compressed into aggregated outcomes; recycling credits can dominate results even when recovery is limited, conditional, or hypothetical; and uncertainty is reduced in the name of comparability even when system behavior varies sharply across regions and infrastructures. In that setting, methodological consistency can mask real differences in persistence risk, leakage, and failure consequences.

For textiles, several dimensions require explicit treatment if PEF is to support credible circular decisions: persistence and leakage where they define long-run burden; renewability and biogenic carbon dynamics to avoid inappropriate equivalence between renewable and fossil systems; biodegradability as conditional and context-dependent; and robust safeguards where claims involve sequestration or soil-related dynamics. PEF remains a footprint tool with regulatory intent, not a circularity framework. Without deliberate adaptation, it should not be treated as a comprehensive basis for circularity assessment or market differentiation in textiles.

The Core Blind Spot: One Logic Applied to Two Different Systems

A deeper weakness across many tools is applying a single analytical logic to fundamentally different circular systems. Biological systems involve renewable carbon and potential safe return pathways tied to land systems, livelihoods, and regeneration. Technical systems depend on industrial loops and carry persistence and pollution exposure when those loops fail. Many frameworks undercount attributes critical to biological systems and under-penalize failure risk in technical systems. When that distinction is flattened, tools can reward theoretical recyclability while obscuring system-level risk and long-run burden. In textiles, this blind spot shapes procurement, policy, and investment outcomes at scale.

Practical Constraints: Data Burden, Cost, and Equity

As metrics move from voluntary reporting into regulation, implementation constraints become decisive. High data requirements, verification costs, inconsistent datasets, and complex modeling favor large brands and well-resourced suppliers. Smaller firms and producers in developing economies face disproportionate compliance burdens. A predictable failure mode is documentation progress without physical progress, where reporting improves while circular outcomes do not.

Measurement systems that ignore feasibility and equity risk becoming barriers to participation and legitimacy rather than drivers of sustainability.

Toward Fit-for-Purpose Measurement

Fit-for-purpose measurement in textiles should be built as a framework, not a single score. It should:

- Separate circularity from sustainability rather than collapsing them into one index
- Represent functional value retention and quality, not mass flows alone
- Treat multi-lifecycle performance and real circulation evidence as central, not optional
- Distinguish biological and technical systems explicitly, including different failure modes and persistence risks
- Incorporate infrastructure and trade context, recognizing that performance is system-dependent
- Embed feasibility and equity so compliance strengthens outcomes rather than excluding actors

Measurement should guide system performance, not reward modeling convenience.

Risks, Trade-Offs, and Unintended Consequences

Even when circular actions increase, net outcomes can worsen. In textiles, circular strategies can reduce waste and virgin throughput, but they can also amplify consumption, enable greenwashing, lock in mis-sequenced infrastructure, and shift burdens across borders and labor markets. These risks are predictable in a high-volume, price-driven sector when circularity is pursued without disciplined measurement, enforceable rules, and social safeguards.

Rebound Effects

Efficiency gains can lower cost, friction, or perceived guilt, stimulating additional consumption that offsets benefits. In textiles, rebound can occur through frictionless resale that accelerates turnover, reduced perceived impact that increases purchasing, or efficiency gains that raise aggregate output. Activity metrics rarely detect rebound because they count circular actions rather than net system outcomes. The relevant test is whether total throughput and harm decline.

Greenwashing and Narrative Inflation

Circularity language has often outpaced system change. Claims can rely on partial indicators, assumed substitution, or narrow attributes without testing displacement, leakage, or real recovery performance. When storytelling advances faster than outcomes, credibility erodes, policy signals weaken, and investment shifts toward what is marketable rather than effective. Under tightening regulation, narrative inflation becomes a financial and legal liability, not only a reputational risk.

Misplaced Investment and Infrastructure Lock-In

The circular transition is capital-intensive. A recurrent failure pattern is investing in the wrong sequence: recycling capacity without sorting systems, processing without viable end markets, technology optimism without energy and chemistry accounting, and business models that increase throughput while claiming circularity. Lock-in occurs when capital is justified by narrow indicators rather than full system performance, creating assets that cannot deliver high-value loop closure under real feedstock conditions.

Social Trade-Offs and Burden Shifting

Circularity can create jobs and enterprise, but it can also deepen inequities through occupational hazards in recovery, informalization of labor, and burden transfer through exports of low-quality used textiles. A transition that improves material recovery while degrading labor conditions or shifting disposal costs to importing countries is neither just nor stable. Social safeguards are therefore a structural requirement for circular scale, not a discretionary add-on.

Chapter 9

FROM CLAIMS TO SYSTEM PERFORMANCE: THE FORWARD AGENDA

Circularity in textiles is not a label. It is a system performance outcome. It scales only when materials, product design, collection and sorting capability, recovery infrastructure, governance, and incentives reinforce one another. Where any element is missing, circularity does not partially work. It fails predictably: value is destroyed, recovery becomes sporadic, and recycling defaults to end-of-pipe waste management.

Four operating rules summarize the evidence in this report:

1. Pathways, not promises: A material is circular only to the extent that credible reuse and recovery pathways exist and function at scale.
2. Design decides: Circular outcomes are largely determined upstream. Product architecture either enables reuse, repair, disassembly, and recovery, or makes them uneconomic.
3. Failure is normal: Collection and sorting are never complete. Materials and designs must be judged by their failure-mode consequences, not best-case assumptions.
4. Proof is replacing narrative: Traceability, product passports, and producer responsibility are turning circularity from voluntary claims into verifiable performance.

These rules define material strategy. Fiber selection is not a neutral choice because materials behave differently when recovery succeeds and when it fails. Circular policy should therefore reward repeatable value retention and penalize persistent harm and non-recoverable complexity, rather than rewarding preferred inputs in abstract.

Circularity must also be development-aligned. A durable transition cannot be built on models where consumer markets capture resale and recovery value while producing regions absorb compliance burdens, price compression, or waste inflows. National capacity in collection and sorting, domestic end markets, and financing for long-tenor infrastructure are not side issues; they are conditions of scale.

Cotton and Polyester in System Perspective

Cotton and polyester sit in different systems and must be evaluated accordingly. Cotton's impacts are often management-dependent and concentrated upstream, while polyester's risks are structurally tied to fossil carbon and persistence. In circular terms, cotton can participate in multiple loops when integrity is preserved; polyester depends on industrial containment and therefore carries higher failure-mode risk.

Blends remain a central obstacle because they deliver performance in the short term while undermining recoverability at scale. The practical conclusion is not a moral ranking of fibers, but a requirement for system-aware decision-making: materials should be selected and governed according to real recovery performance, failure consequences, and social outcomes.

Forward Agenda: What Scaling Requires

The transition from claims to system performance requires four deliverables:

1. Design rules that scale: product architecture standards that enable durability, repair, reuse, disassembly, and credible recovery, with clear limits on complexity where recovery systems cannot cope.
2. Enforceable governance: Digital Product Passports, traceability, and eco-modulated producer responsibility built around auditability and outcome-based compliance.
3. System infrastructure: investment in collection, sorting, repair ecosystems, and recovery capacity sequenced correctly, with stable offtake and end markets.
4. Development and equity safeguards: financing structures and policy frameworks that protect livelihoods, support producing-country upgrading, and prevent waste burden transfer.

Circularity will be won or lost in measurable system performance: what products are designed to do, what systems can verify, what infrastructure can process, and what outcomes can be demonstrated at scale. Circular economy is not a story about better materials. It is a discipline of system design, tested by failure, and proven in outcomes.

REFERENCES

- Ruiz, L. (2024). World Textile Demand 2024. International Cotton Advisory Committee (ICAC).
<https://icac.org/publications-and-issues/world-textile-demand>
- European Commission – JRC (2023). Circular Economy Perspectives in Textiles. Joint Research Centre Technical Report.
- Geissdoerfer, M., Savaget, P., Bocken, N. M. P., & Hultink, E. J. (2017). The Circular Economy – A new sustainability paradigm? *Journal of Cleaner Production*, 143, 757–768.
<https://doi.org/10.1016/j.jclepro.2016.12.048>
- Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the circular economy: An analysis of 114 definitions. *Resources, Conservation & Recycling*, 127, 221–232.
<https://doi.org/10.1016/j.resconrec.2017.09.005>
- Murray, A., Skene, K., & Haynes, K. (2017). The circular economy: An interdisciplinary exploration of the concept. *Journal of Business Ethics*, 140, 369–380.
<https://doi.org/10.1007/s10551-015-2693-2>
- Bocken, N. M. P., de Pauw, I., Bakker, C., & van der Grinten, B. (2016). Product design and business model strategies for a circular economy. *Journal of Industrial and Production Engineering*, 33(5), 308–320.
<https://doi.org/10.1080/21681015.2016.1172124>
- Niinimäki, K., et al. (2020). The environmental price of fast fashion. *Nature Reviews Earth & Environment*, 1, 189–200.
<https://doi.org/10.1038/s43017-020-0039-9>
- Sandin, G., & Peters, G. M. (2018). Environmental impact of textile reuse and recycling – A review. *Journal of Cleaner Production*, 184, 353–365.
<https://doi.org/10.1016/j.jclepro.2018.02.266>
- Koszewska, M. (2018). Circular economy in textiles and fashion – The role of reuse and recycling.

Autex Research Journal, 18(4), 337–347.

<https://doi.org/10.1515/aut-2018-0023>

- Vermeyen, V., Alaerts, L., Worrell, E., & Van Acker, K. (2024). Threads untangled: Regional mapping of post-consumer textile management. *Cleaner Waste Systems*, 9, 100181.
<https://doi.org/10.1016/j.clwas.2024.100181>
- Haslinger, S., et al. (2019). Closed-loop recycling of cotton textiles through wet-spun regenerated fibers. *ACS Sustainable Chemistry & Engineering*, 7(4), 3778–3786.
<https://doi.org/10.1021/acssuschemeng.8b06166>
- Arafat, Y., & Uddin, A. (2022). Recycled fibers as blend constituents in 100% cotton yarns. *Heliyon*, 8, e11275.
<https://doi.org/10.1016/j.heliyon.2022.e11275>
- Muthu, S. S. (2014). Roadmap to sustainable textiles and clothing. Springer.
<https://doi.org/10.1007/978-981-287-065-0>
- Li, Y., et al. (2025). Manufacturing regenerated cellulose fiber from post-consumer cotton waste. *International Journal of Biological Macromolecules*.
- Hossain, M., et al. (2024). Techniques and challenges for sustainable textile futures. *Journal of Open Innovation*, 10, 100230.
<https://doi.org/10.1016/j.joitmc.2024.100230>
- Shirvanimoghaddam, K., et al. (2020). Challenges of recycling blended textiles. *Journal of Cleaner Production*, 264, 121566.
<https://doi.org/10.1016/j.jclepro.2020.121566>
- Sun, H., et al. (2025). Closed-loop recycling of polyester–cotton blended fabrics. *Polymer Degradation and Stability*.
- Zamani, B., et al. (2015). A carbon footprint of textile recycling technologies. *Journal of Industrial Ecology*, 19(4), 593–606.
<https://doi.org/10.1111/jiec.12218>

- Napper, I. E., & Thompson, R. C. (2016).
Release of synthetic microplastic fibres from domestic washing.
Marine Pollution Bulletin, 112(1–2), 39–45.
<https://doi.org/10.1016/j.marpolbul.2016.09.025>
- De Falco, F., et al. (2018).
The contribution of washing processes to microplastic pollution.
Environmental Pollution, 236, 916–925.
<https://doi.org/10.1016/j.envpol.2017.10.090>
- Liu, B., Li, W., Pan, X., & Zhang, D. (2022).
Long-term plastic mulching impacts on cotton soils and yields.
Environmental Pollution.
- Henry, B., Laitala, K., & Klepp, I. G. (2019).
Microfibres from apparel and home textiles.
Environmental Science & Pollution Research, 26, 17317–17328.
<https://doi.org/10.1007/s11356-019-05038-7>
- Shen, L., et al. (2010).
Compostability of polymers.
Polymer International, 59(9), 1185–1194.
<https://doi.org/10.1002/pi.2420>
- Cotton Incorporated (n.d.).
Cotton to Compost: Transforming waste management in textiles.
<https://cottontoday.cottoninc.com/cotton-to-compost-transform-waste-management-textile-industry/>
- Degreif, A., et al. (2021).
Marine biodegradation of natural and synthetic textile fibers.
Journal of Hazardous Materials, 416, 125749.
<https://doi.org/10.1016/j.jhazmat.2021.125749>
- Zink, T., & Geyer, R. (2017).
Circular economy rebound.
Journal of Industrial Ecology, 21(3), 593–602.
<https://doi.org/10.1111/jiec.12545>
- Figge, F., & Thorpe, A. (2019).
The symbiotic rebound effect.
Ecological Economics, 164, 106346.
<https://doi.org/10.1016/j.ecolecon.2019.106346>
- Vivanco, D. F., & Freire-González, J. (2021).
Rebound effect and sustainability science.

Journal of Industrial Ecology, 25(1), 3–15.

<https://doi.org/10.1111/jiec.13295>

- Bernini, F., & La Rosa, F. (2023).
Greenwashing in sustainability transitions.
Journal of Management & Governance.
<https://doi.org/10.1007/s10997-023-09692-9>
- Todaro, D. L., & Torelli, R. (2023).
From greenwashing to ESG-washing.
Corporate Social Responsibility and Environmental Management.
<https://doi.org/10.1002/csr.2786>
- Tenreira, L. (2025).
Greenwashing in global value chains.
Journal of Environmental Law, 37(2), 175–198.
<https://doi.org/10.1093/jel/eqaf006>